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Abstract

We consider in this paper the dictionary
learning problem when the observations are
normalized histograms of features. This
problem can be tackled using non-negative
matrix factorization approaches, using typi-
cally Euclidean or Kullback-Leibler fitting er-
rors. Because these fitting errors are separa-
ble and treat each feature on equal footing,
they are blind to any similarity the features
may share. We assume in this work that we
have prior knowledge on these features. To
leverage this side-information, we propose to
use the Wasserstein (a.k.a. earth mover’s or
optimal transport) distance as the fitting er-
ror between each original point and its re-
construction, and we propose scalable algo-
rithms to to so. Our methods build upon
Fenchel duality and entropic regularization
of Wasserstein distances, which improves not
only speed but also computational stability.
We apply these techniques on face images and
text documents. We show in particular that
we can learn dictionaries (topics) for bag-
of-word representations of texts using words
that may not have appeared in the original
texts, or even words that come from a differ-
ent language than that used in the texts.

1 Introduction

Consider a collection X = (x1, . . . , xm) of m vectors
of dimension n. Learning a dictionary for X can be
stated informally as the goal of finding k dictionary
elements D = (d1, . . . , dk) of the same dimension n
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such that each Xi can be reconstructed using such a
dictionary, namely such that there exists a matrix of
mixture weights Λ = (λ1, . . . , λm) such that X ' DΛ.

When all elements of X are non-negative, and if it is
desirable that all elements of D and Λ are nonnegative
too, this problem becomes that of Non-negative Matrix
Factorization (NMF) [Paatero and Tapper, 1994]. Lee
and Seung [2001] proposed two algorithms for NMF,
with the aim of solving problems of the form:

min
D∈Rn×k

+ ,Λ∈Rk×m+

m∑
i=1

`(xi, Dλi) +R(D,Λ),

where ` is either the Kullback-Leibler divergence or the
squared Euclidean distance and R a regularizer. Dic-
tionary learning and NMF have been used for various
machine learning and signal processing tasks, includ-
ing (but not limited to) semantic analysis [Hofmann,
1999, Lee and Seung, 1999], matrix completion [Zhang
et al., 2006] and sound denoising [Schmidt et al., 2007].

Our goal in this paper is to generalize these approaches
using a regularized Wasserstein (a.k.a optimal trans-
port [Villani, 2009] or earth mover’s [Rubner et al.,
1998]) distance as the data fitting term `. Such dis-
tances can leverage additional knowledge on the space
of features using a metric between features called the
ground metric. Since the seminal work of Rubner
et al. [1998], several hundred papers have success-
fully used EMD in applications. Some recent works
have for instance illustrated its relevance for text
classification [Kusner et al., 2015], image segmenta-
tion [Rabin and Papadakis, 2015] and shape interpo-
lation [Solomon et al., 2015].

We motivate the idea of using a Wasserstein fitting er-
ror with a toy example described in Figure 1. In this
example we try to learn dictionaries for histogram rep-
resentations of i.i.d. samples from mixtures of Gaus-
sians. We consider n = 100 distributions ρ1, . . . , ρn,
each of which is a mixture of three univariate Gaus-
sians of unit variance, with centers picked indepen-
dently using N (−6, 2), N (0, 2) and N (6, 2) respec-
tively. The relative weights of these Gaussians are
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picked uniformly on [0, 1] and subsequently normalized
to sum to 1 for each distribution. We consider then a
sample of m observations for each distribution ρi, and
represent each sample as a histogram xi of n = 100
bins regularly spaced on the segment [−12, 12]. Here
the features are points on the quantization grid, and
the ground metric is simply the Euclidean distance be-
tween these points. Wasserstein NMF recovers com-
ponents which are centered around −6, 0 and 6 and
resemble Gaussian pdfs. Because it is blind to the
metric structure of R, KL NMF fail to recover such
intuitive components.
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Figure 1: Dictionaries learned on mixtures of three
randomly shifted Gaussians. Separable distances or
divergences do not quantify this noise well because it is
not additive in the space of histograms. Top: examples
of data histograms. Bottom: dictionary learned with
Wasserstein (left) and Kullback-Leibler (right) NMF.

Related Work Sandler and Lindenbaum [2009]
were the first to consider NMF problems using a
Wasserstein loss. They noticed that minimizing
Wasserstein fitting errors requires solving an extremely
costly linear program at each iteration of their block-
coordinate iteration. Because of this, they settle in-
stead for an approximation of the Wasserstein distance
proposed by Shirdhonkar and Jacobs [2008]. However
this approximation can only be used when the fea-
tures are in Rd, and its complexity is exponential in
d, making it impractical when d > 3. Moreover the
experimental approximation ratio for d = 2 in Shird-
honkar and Jacobs [2008] is rather loose (1.5) even
with the best hyper-parameters. Zen et al. [2014] also
proposed a semi-supervised method to learn D,Λ and
a ground metric parameter. Their approach is to al-

ternatively learn the ground metric as proposed pre-
viously in [Cuturi and Avis, 2014] and perform NMF
by solving two very high dimensional linear programs.
They apply their algorithm to histograms of small di-
mension (n ≤ 16).

Our Contribution The algorithms we propose to
solve dictionary learning and NMF problems with a
Wasserstein loss scale to problems with far more ob-
servations and dimensions than previously considered
in the literature [Sandler and Lindenbaum, 2009, Zen
et al., 2014]. This is enabled by an entropic regulariza-
tion of optimal transport [Cuturi, 2013] which results
in faster and more stable computations. We intro-
duce this regularization in Section 2, and follow in Sec-
tion 3 with a detailed presentation of our algorithms
for Wasserstein (nonnegative) matrix factorization of
histogram matrices. In contrast to previously consid-
ered approaches, our approach can be applied with
any ground metric. As with most dictionary learn-
ing problems, our objective is not convex but bicon-
vex in the dictionary D and weights Λ and we use a
block-coordinate descent approach. We show that each
of these subproblems can be reduced to an optimiza-
tion problem involving the Legendre-Fenchel conjugate
of the objective, building upon recent work in Cuturi
and Peyré [2016] that shows that the Legendre-Fenchel
conjugate of the entropy regularized Wasserstein dis-
tance and its gradient can be obtained in closed form.
We show in Section 4 that these fast algorithms are or-
der of magnitudes faster than those proposed in San-
dler and Lindenbaum [2009], whose experiments we
replicate. Finally, we show that the features used
to describe dictionary elements can be different from
those present in the original histograms. We show-
case this property to carry out cross-language semantic
analysis: we learn topics in French using databases of
English texts. A Matlab implementation of our meth-
ods and scripts to reproduce the experiment in the in-
troduction are available at http://arolet.github.

io/wasserstein-dictionary-learning/.

Notations If X is a matrix, Xi denotes its ith line,
xj its jth column and Xij its element at the ith line
and jth column. For x, y ∈ Rn, 〈x, y 〉 is the usual
dot product between x and y. For X,Y ∈ Rn×m,

〈X,Y 〉 def.
= tr(XTY ) =

∑m
i=1〈Xi, Yi 〉 is the Frobenius

dot-product between matrices X and Y . If A,B are
two matrices of the same size, A�B (resp. A

B ) denotes
the coordinate-wise product (resp. quotient) between
A and B. Σn is the set of n-dimensional histograms:

Σn
def.
=
{
q ∈ Rn+ | 〈q,1 〉 = 1

}
. If A is a matrix, A+

is its Moore-Penrose pseudoinverse. Exponentials and
logarithms are applied element-wise to matrices and
vectors.

http://arolet.github.io/wasserstein-dictionary-learning/
http://arolet.github.io/wasserstein-dictionary-learning/
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If f : Ω ⊂ Rn → R is convex, its Legendre conjugate
f∗ : x ∈ Rn 7→ max

y∈Ω
〈x, y 〉 − f(y) is convex. If g : Ω ⊂

Rn → R is concave, then g∗ = −(−g)∗ is concave and
is defined as ∀x ∈ Rn, g∗(x) = min

y∈Ω
−〈x, y 〉 − g(y).

2 Regularized Wasserstein Distances

We start this section by defining Wasserstein distances
for histograms and then introduce their entropic reg-
ularization.

2.1 Definition of Wasserstein Distances

Let p ∈ Σn, q ∈ Σs. The polytope of transportation
plans between p and q is defined as follows:

U(p, q) =

{
T ∈ Rn×s+ s.t.

∣∣∣∣∣ T1 = p

TT1 = q

}
.

Let M ∈ Rn×s+ be matrix of costs. The optimal trans-
port cost between p and q with respect to M is

W (p, q)
def.
= min

T∈U(p,q)
〈M,T 〉. (1)

The optimization problem described above is a min-
imum cost network flow. Specialized algorithm can
solve it with O(((n+s)log(n+s))2 +ns(n+s) log(n+
s))1 [Orlin, 1993]. In most applications, M is a
pairwise distance matrix called the ground metric.
Namely, there exists a metric space (Ω,d) and ele-
ments y1, · · · , yn and z1, · · · , zs in Ω such that Mij =
d(yi, zj). In that case W is a distance [Villani, 2009].

2.2 Entropic Regularization

Solving problems with Wasserstein distance fitting er-
rors can require solving several costly optimal trans-
port problems. As a minimum of affine functions, the
Wasserstein distance itself is not a smooth function
of its arguments [Cuturi and Doucet, 2014]. To avoid
both of these issues, Cuturi [2013] proposed to smooth
the optimal transport problem with an entropic term:

Wγ(p, q)
def.
= min

T∈U(p,q)
〈M,T 〉 − γh(T ), (2)

where h is the (strictly concave) entropy function:

h(T )
def.
= −〈T, log T 〉. (3)

The plan T ? solution of the problem in Equation (2)
is unique and can be found by computing two vectors
u ∈ Rn+, v ∈ Rs+ such that diag(u)K diag(v) ∈ U(p, q),

where K = e−M/γ . The optimal solution is then

1or n3 logn if s = O(n)

T ∗ = diag(u)K diag(v). The problem of finding these
two vectors u, v is known as a matrix balancing prob-
lem, and is typically solved using Sinkhorn’s [1967]
algorithm. This algorithm has linear convergence, and
requires O(ns) operations at each iteration. The ben-
efits of using an entropic regularization are not just
computational. In many cases, the linear program de-
fined in Equation (1) does not have a unique solution.
Because of this, W is not differentiable with respect
to either its first or second variable. Wγ , on the other
hand, is differentiable as soon as γ > 0. Problems in
which we want to optimize an objective depending on
the Wasserstein distance are thus harder to solve with
γ = 0, as argued in Cuturi and Peyré [2016] when try-
ing to compute, for instance, Wasserstein barycenters.

2.3 Legendre Transform

We show in Section 3 that the optimization problems
involved for dictionary learning with a Wasserstein er-
ror term can be solved using dual problems whose ob-
jectives involve the Legendre-Fenchel conjugate of the
smoothed Wasserstein distance. To abbreviate formu-
las, we use the following notation for a given p ∈ Σn:

Hp
def.
= q 7→Wγ(p, q).

Cuturi and Peyré [2016] showed that the Legendre
transform of the entropy regularized Wasserstein dis-
tance, as well as its gradient, can be computed in
closed form:

H∗p (g) = γ (E(p) + 〈p, logKα 〉) ,

∇H∗p (g) = α�
(
KT p

Kα

)
.

where K
def.
= e−M/γ and α

def.
= eg/γ . Moreover, they

showed that for p ∈ Σn and g ∈ Rs, ∇H∗p (g) ∈ Σs
and that ∇H∗p is 1

γ -Lipschitz. When γ = 0, H∗p is not
differentiable anymore but elements of its subgradi-
ent can be computed efficiently, notably for Euclidean
point clouds [Carlier et al., 2015].

3 Wasserstein Dictionary Learning

3.1 Problem Formulation

Let X ∈ (Σn)m be a matrix of m vectors in the n-
dimensional simplex. Let k be a number of dictionary
elements, fixed in advance. We consider the problem

min
Λ∈Rk×m,D∈Rs×k

m∑
i=1

Hxi(Dλi) +R(Λ, D) (4)

s.t. DΛ ∈ Σms .
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Problem (4) is convex separately (but not jointly) in
D and Λ as long as R is convex. We propose in what
follows to use a block-coordinate descent on D and Λ.

Sandler and Lindenbaum [2009] show that when R =
0, γ = 0 and either D or Λ is fixed, Equation (4)
is a linear program of dimensions m × n × s with
m×(n×s+n+s) constraints, each involving 1, n or t×k
variables. Representing these constraints is challeng-
ing for common sized datasets, and solving such prob-
lems is usually intractable. They proposed to replace
the Wasserstein distance by an approximation [Shird-
honkar and Jacobs, 2008], for which the gradients are
easier to compute. However this approximation can
only be used when M is a distance matrix in a Eu-
clidean space of small dimension. We propose to con-
sider instead a positive regularization strength γ > 0.
This allows us to consider any cost matrix M , rather
than only pairwise distance matrices, and makes the
optimization problems smooth and better behaved, in
the sense that when D or Λ are full rank, the optimiz-
ers of each block update is unique. We propose next
in §3.3 an entropic regularization on the columns of D
and Λ to enforce positivity of these coefficients.

3.2 Wasserstein Dictionary Learning

Mixture Weights Update We consider here the
case where the dictionary D is fixed, and our goal is
to compute mixture weights Λ

argmin
Λ∈Rk×m

m∑
i=1

Hxi(Dλi), s.t. DΛ ∈ Σms . (5)

This problem can be solved using a gradient descent,
but computing the gradient is equivalent to evaluat-
ing each Hxi(Dλi) for i = 1, · · · ,m, that is solving m
intermediate matrix scaling problems. We propose to
use duality instead and attack the problem by exploit-
ing the fact that H∗xi have closed form gradients.

Theorem 1. Let Λ? be a solution of Problem (5). Λ?

satisfies Dλ?i = ∇H∗xi(g
?
i ) for i = 1, . . . ,m, with

g?i ∈ argmin
g∈Rs

H∗xi(g) s.t. DT g = 0. (6)

Moreover if D is full-rank this solution is unique.

Proof. Let us introduce the variable Q = DΛ. Prob-
lem (5) becomes

min
Λ∈Rk×m,Q∈Σms

m∑
i=1

Hxi(qi) s.t. DΛ = Q.

It is a convex optimization problem with affine con-

straints, so strong duality holds and its dual reads

max
G∈Rs×m

min
Λ∈Rk×m,Q∈Σms

m∑
i=1

Hxi(qi) + 〈DΛ−Q,G 〉

= max
G∈Rs×m

min
Λ∈Rk×m

〈DΛ, G 〉+ min
Q∈Σmt

m∑
i=1

Hxi(qi)− 〈qi, gi 〉

= max
G∈Rs×m

min
Λ∈Rk×m

〈DΛ, G 〉 −
m∑
i=1

H∗xi(gi) (7)

= max
G∈Rs×m

min
Λ∈Rk×m

m∑
i=1

〈Λi, DT gi 〉 −H∗xi(gi).

If DTG 6= 0, then min
Λ∈Rk×m

m∑
i=1

〈λi, DT gi 〉 = −∞. Since

H∗xi(gi) is finite for all i, the maximum over G is real-
ized only if DTG = 0. The problem becomes

max
G∈Rs×m

s.t. DTG=0

−
m∑
i=1

H∗xi(gi) =

m∑
i=1

max
g∈Rs

s.t. DT g=0

−H∗xi(g).

This is the same optimization problem as in Equa-
tion (6) and it has only one solution G?. The first
order conditions of (7) are DΛ? =

(
∇H∗xi(g

?
i )
)m
i=1

. If
D is full rank, this linear equation has a unique solu-
tion.

Remark 1. Here, for i = 1 . . .m, Dλ?i is in the sim-
plex because ∇H∗xi(gi) is itself in the simplex (see sec-
tion 2.3). However the column of Λ? are not required
to be in the simplex and could even possibly take nega-
tive values. If all the columns of D are in the simplex,
then, however, columns of Λ? need to sum to 1.

We solve Equation (6) with a projected gradient de-
scent and then recover Λ? by solving the linear equa-
tion DΛ? =

(
∇H∗xi(g

?
i )
)m
i=1

.

Dictionary Update Assuming weights Λ are fixed,
our goal is now to learn the dictionary matrix D.

Theorem 2. Let D? be a solution of

min
D∈Rs×k

m∑
i=1

Hxi(Dλi) s.t. DΛ ∈ Σms .

D? satisfies D?Λ =
(
∇H∗xi(g

?
i )
)m
i=1

, with

G?∈ argmin
G∈Rs×m

m∑
i=1

H∗xi(gi) s.t. GΛT = 0. (8)

Moreover if Λ is full-rank this solution is unique.

The proof is similar to that of Theorem 1. We solve
Equation (8) with a projected gradient descent and
then recover D? by solving the linear equation D?Λ =(
∇H∗xi(g

?
i )
)m
i=1

.
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3.3 Wasserstein NMF

In order to enforce non-negativity constraints on the
variables, we consider the problem

min
Λ∈Σmk
D∈Σks

m∑
i=1

Hxi(Dλi)− ρ1E(Λ)− ρ2E(D) (9)

s.t. DΛ ∈ Σms ,

where E is defined for matrices which columns are in
the simplex as E(A) = 〈A, logA 〉. This regulariza-
tion allows us to derive similar results as those in Sec-
tion 3.2 which we can use to find non-negative iterates
for D and Λ efficiently.

Enforcing Positive Weights Problem (9) with a
fixed dictionary is convex but as in Section 3.2 the
gradient of the objective is computationally expensive.
We have a similar duality result:

Theorem 3. The solution of

min
Λ∈Σmk

m∑
i=1

Hxi(Dλi)− ρ1E(λi) s.t. DΛ ∈ Σms ,

is Λ? =

(
e−D

T g?i /ρ1

〈e−D
T g?
i
/ρ1 ,1 〉

)m
i=1

, with

g?i ∈ argmin
g∈Rs

H∗xi(g)− ρ1E∗(−DT g/ρ1). (10)

The proof, similar to that of Theorem 1, is given in ap-
pendix. The objective and gradient of the optimiza-
tion problem in Equation (10) can be computed in
closed form with the following formulas:

E∗(x) = − log〈ex,1 〉, ∇E∗(x) = − ex

〈ex,1 〉
.

We solve Equation (10) with an accelerated gradient
scheme [Nesterov, 1983]. The gradient of the objective
in Equation (10) is(

∇H∗xi(gi)−D
e−D

T gi/ρ1

〈e−DT gi/ρ1 ,1 〉

)m
i=1

.

Enforcing Positive Dictionaries Similarly, we
have the following theorem:

Theorem 4. The solution of

min
D∈Σks

m∑
i=1

Hxi(Dλi)− ρ2

k∑
i=1

E(di) s.t. DΛ ∈ Σms ,

is D? =

(
e−G

?ΛTi /ρ2

〈e−G
?ΛT
i
/ρ2 ,1 〉

)k
i=1

, with

G?∈ argmin
G∈Rs×m

m∑
i=1

H∗xi(gi)−
k∑
i=1

ρE∗(−GΛTi /ρ2). (11)

The proof is similar to that of Theorem 3. We solve
Equation (11) with an accelerated gradient scheme.
The gradient of the objective of in Equation (11) is

(
∇H∗xi(gi)

)m
i=1
−

k∑
i=1

e−GΛTi /ρ2Λi

〈e−GΛTi /ρ2 ,1 〉
.

3.4 Convergence

As pointed by Sandler and Lindenbaum [2009], the
alternate optimization process generates a sequence
of lower bounded non-increasing values for the objec-
tive of Problem (4), so the sequence of objectives con-
verges. When, moreover, we use an entropic regular-
ization (ρ1, ρ2 > 0, §3.3), successive updates for D and
Λ remain in the simplex, which is compact, and thus
satisfy the conditions of [Tropp, 2003, Theorem 3.1],
taking into account that the hypothesis made in that
theorem that the divergence is definite is not actually
used in the proof. Thus every accumulation point of
the sequences of iterates of D and Λ is a generalized
fixed point. Moreover, if the iterates remain of full
rank, then Theorem 3.2 in the same reference applies,
and the sequences either converge or have a contin-
uum of accumulation points. Although this full rank
hypothesis is not guaranteed to hold, we observe that
it holds in practice when the entropic regularization
term does not dominate the objective.

3.5 Implementation

Projection Step for Unconstrained Dictionary
Learning We solve Equations (6) and (8) with pro-
jected gradient descent methods. The orthogonal pro-
jector of the optimization problem is projKer(DT) :=

G 7→ G − DD+G in Equation (6) and projKer(Λ) :=

G 7→ G−GΛ+Λ in Equation (8). Precomputing DD+

(resp. Λ+Λ) uses O(s2) (resp. O(m2)) memory space,
and then the projection is performed in complexity
O(s2 ×m) (resp. O(s ×m2)). When either s or m is
large, storing such a matrix is too expensive and leads
to slowdowns due to memory management. In such a
case, we can precompute D+ (resp. Λ+), which takes
O(s×k) (resp. O(m×k)) memory space, and compute
projKer(DT)(G) as G − D(D+G) (resp. projKer(Λ)(G)

as G− (GΛ+)Λ) in O(s2 ×m2 × k2) operations.

Parallelization of the Dictionary Update Paral-
lelization on multiple processes is easy for the weights
updates because each weight vector λi can be com-
puted independently. The dictionary updates how-
ever cannot be reduced to completely independent sub-
problems. Indeed the constraint in Equation (8) makes
a dependence on the columns of D. Similarly the gra-
dient of the objective in Equation (11) cannot be sep-
arated into independent sub-problems.
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We show how to use parallel processes to speed-up the
unconstrained dictionary updates. The most compu-
tationally expensive part it to solve the optimization
problem of Equation (8). The objective and gradi-
ent of this problem can be computed independently
for each column. Then we can gather the gradient on
a single process and project it. Since the constraint
is linear we can directly project the gradient before
computing the step-size of the descent, so that if this
computation involves computing the objective (like a
backtracking line-search does for example) the projec-
tion does not need to be repeated.

We also propose a scheme to partially parallelize the
positive dictionary updates. The objective and gra-
dient of the optimization problem in Equation (11)

are found by computing e−GΛT , which cannot be com-
puted separately on columns of G. An efficient way to

still compute e−GΛT in parallel is to split G column-
wise into (G(1), . . . , G(p)) where p is the number of

processes available, and compute e−G
(i)ΛT on pro-

cess i. The managing process computes e−GΛT as∏p
i=1 e

−G(i)ΛT (here the product is point-wise) and
gives the result to all the other processes so that
they can finish computing the gradient. By doing so
most of the work is done in parallel and each process
only shares a matrix of size s × k twice per gradi-
ent/objective calculation. Since usually k � m this
allows to use all the available processes while keeping
communication overhead low.

4 Experiments

4.1 Face Recognition

We reproduce here the face recognition experiment
of Sandler and Lindenbaum [2009] on the ORL
dataset [Samaria and Harter, 1994] with the same
preprocessing, classification and evaluation method in
order to compare computation time. Each image is
downsampled so that its longer side is 32. We rep-
resent images as column vectors that we normalize
so that they sum to 1 and store them in matrix X.
The cost matrix M is the Euclidean distance between
pixels. For evaluation, the dataset is split evenly in
two, trained on one set and tested on the other several
times, and we take the take best classification perfor-
mance obtained. Table 1 shows the classification ac-
curacy obtained with unconstrained Wasserstein Dic-
tionary Learning (Section 3.2). The results are com-
parable to those of Sandler and Lindenbaum [2009].

Learning the dictionary and coefficients with a Matlab
implementation of our algorithm on an single core of
a 2.4Ghz Intel Quad core i7 CPU with k = 40 takes

Table 1: Classification accuracy for the face recogni-
tion task on the ORL dataset.

k 10 20 30 40 50
γ = 1/30 93% 95.5% 97% 96.5% 96%
γ = 1/50 91% 95% 95% 97% 94.5%
Sandler09 94.5% 90.5% 95% 96.5% 97%

on average 20s for γ = 1/30 and 90s for γ = 1/50,
while Sandler and Lindenbaum [2009] report up to 20
minutes just for the D step with a comparable CPU.
The whole NMF can take up to 10 minutes when we
use the entropy positivity barrier with ρ1 = ρ2 = 1/10.

4.2 Semantic Analysis

The goal of semantic analysis is to extract a few rep-
resentative histograms of words (a.k.a. topics) from
large corpora of texts. To tackle this task, Prob-
abilistic Latent Semantic Indexing (PLSI, Hofmann
[1999]) learns a non-negative factorization of the form
X = DΣΛ, which models the document generation
process: D is the matrix of word probabilities know-
ing the topic, Σ is the diagonal matrix of topic prob-
abilities and Λ is the matrix of document probability
knowing the topic. Ding et al. [2008] shows that PLSI
optimizes the same objective as the algorithm in Lee
and Seung [1999] for a Kullback-Leibler error term.

We use the same approach as Lee and Seung [1999] to
learn topics from a database of texts with NMF. The
input data is a bag-of-words representation of the doc-
uments. Let Y = {y1, . . . , yn} be the vocabulary of the
database, a text document is represented as vector of
word frequencies: Xij is the frequency of the word yi
in the jth text. We get topics D by learning a factor-
ization DΛ with NMF. The cost of the factorization
is usually its Euclidean distance or Kullback-Leibler
divergence to X. In order to use a Wasserstein cost
instead, we need a meaningful cost for transporting
words from one to another.

Recent works [Pennington et al., 2014, Zou et al.,
2013], building upon earlier references [Bengio et al.,
2003], propose to compute Euclidean embeddings for
words such that the Euclidean or cosine distances be-
tween the respective image of two words corresponds
to some form of semantic discrepancy between these
words. As recently shown by Kusner et al. [2015],
these embeddings can be used to compare texts using
the toolbox of optimal transport: Bag-of-words his-
tograms can be compared with Wasserstein distances
using the Euclidean metric between the words as the
ground metric M . We leverage these results to learn
topics from a text database using Wasserstein NMF.
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4.2.1 Datasets

We learned topics on two datasets labeled. Labels are
ignored for performing NMF, and are only used for
evaluation. For each dataset, let m be the number of
documents, n the vocabulary size and c the number
of labels. (i) BBCsport [Greene and Cunningham,
2006] is a dataset of news articles about sports, labeled
according to which sport the article is about, in which
we removed stop-words (n = 12, 669, m = 737, c = 5).
We split the dataset as a 80/20 training / testing set
for classification. (ii) Reuters is a dataset of news
articles labeled according to their area of interest. We
used the version described in Cardoso-Cachopo [2007],
with the same train-test split for classification, and re-
moved stop-words and words that appeared only once
across the corpus (n = 13, 038, m = 7, 674, c = 8).

4.2.2 Monolingual Semantic Analysis

We used a pretrained Glove word embedding [Penning-
ton et al., 2014] to map words to a Euclidean space of
dimension 300. Let ~y1, . . . , ~ys be the embeddings of
the words in the dataset’s vocabulary, and ~z1, . . . , ~zs
the embeddings of the words in the target vocabu-
lary, that is the words that are allowed to appear in
the topics. We define the cost matrix of the Wasser-
stein distance as the cosine distance in the embedding:

Mij = 1− 〈~yi, ~zj 〉‖~yi‖‖~zj‖ . We then findD and Λ with Wasser-

stein NMF (W-NMF, Section 3.3).

Figure 2 shows a word cloud representation (wordle.
net) for 4 relevant topics for the dataset BBCsport.
Depending on the parameters, the full Wasserstein
NMF computation takes from 20 minutes to an hour
for BBCsport and around 10 hours for Reuters using
a Matlab implementation running on a single GPU of
an Nvidia Tesla K80 card.

Target Words Selection Since we can choose as
target words any word that is defined for the em-
bedding, we need a way to select which to use. We
chose to use a list of 3, 000 frequent words in English2.
Other approaches can be considered such as using the
dataset’s vocabulary, tokenized or not, or taking the
most frequent words for each class in the dataset.

4.2.3 Cross-language Semantic Analysis

Lauly et al. [2014] propose a bilingual word represen-
tation that maps words in two different languages to
the same Euclidean space. By setting the vocabulary
of the topics as a subset of the words in the target lan-
guage, we can learn topics in that language. Figure 3

2Available at https://simple.wiktionary.org/wiki/
Wiktionary:BNC_spoken_freq

Figure 2: Word clouds representing 4 of the 15 top-
ics learned on BBCsport in English. Top-left topic:
competitions. Top-right: time. Bottom-left: soccer
actions. Bottom-right: drugs.

illustrates what we would expect with k = 1, which is
the Wasserstein iso-barycenter problem. We use a pre-
trained embeddings of dimension 40 from Lauly et al.
[2014] in order to learn topics in French. Note that
this method could also learn topics in one language
from a bilingual dataset, or in both languages.

As in Section 4.2.2, we use the cosine distance in
the embedding as the ground metric. Table 4 shows
word cloud representations for 4 relevant topics for the
dataset Reuters. Computation times are similar to
those with a target vocabulary in English.

Figure 3: The Wasserstein iso-barycenter of two En-
glish sentences with a target vocabulary in French. Ar-
rows represent the optimal transport plan from a text
to the barycenter. The barycenter is supported on
the bold red words which are pointed by arrows. The
barycenter is not equidistant to the extreme points be-
cause the set of possible features is discrete.

Target words selection We chose as the target dic-
tionary a list of of 6, 000 frequent words in French3.

3Available at http://wortschatz.uni-leipzig.de/
Papers/top10000fr.txt

wordle.net
wordle.net
https://simple.wiktionary.org/wiki/Wiktionary:BNC_spoken_freq
https://simple.wiktionary.org/wiki/Wiktionary:BNC_spoken_freq
http://wortschatz.uni-leipzig.de/Papers/top10000fr.txt
http://wortschatz.uni-leipzig.de/Papers/top10000fr.txt
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Figure 4: Word clouds representing 4 of the 24 topics
learned on Reuters in French. Top-left topic: inter-
national trade. Top-right: oil and other resources.
Bottom-left: banking. Bottom-right: management
and funding.

Table 2: Text classification error. W-NMFf is the clas-
sifier using W-NMF with a French target vocabulary.

Method KL-NMF E-NMF W-NMF W-NMFf
Reuters 6.9% 8.2% 6.0% 9.8%
BBCsport 9.4% 12.8% 5.4% 20.8%

4.2.4 Classification Performance

We compared the classification error obtained on the
two datasets with our method to those obtained by us-
ing the mixture weights produced by Euclidean NMF
(E-NMF) and Kullback-Liebler NMF (KL-NMF). We
use a k-NN classifier with a Hellinger distance between
the mixture weights. k is selected by 10-fold cross-
validation on the training set, using the same parti-
tions for all methods. We set the number of topics to
3c. Parameters γ, ρ1 and ρ2 were set to be as small as
we could (small values can make the gradients infinite
because of machine precision) without a particular se-
lection procedure. See supplementary materials for a
representation of all the topics of every method.

Wasserstein NMF with a target vocabulary in English
performs better on this auxiliary task than Euclidean
or KL NMF. Although this does not prove that the
topics are of better quality, it shows that Wasserstein
NMF can drastically reduce the vocabulary size with-
out loosing discriminative power. As we can see in
Figures 2, 4, the topics themselves are semantically
coherent and related to the datasets’ content.

The classification error for W-NMF with a French tar-
get vocabulary on BBCsports is rather bad, although
the topics are coherent and related to the content of
the articles. The confusion matrix (Table 3) shows
that more than half of the articles about tennis are
misclassified. In fact, the other methods produce a
topic about tennis, but W-NMF with a French dic-
tionary does not. Table 4 shows the French words

Table 3: Confusion matrices for BBCsports for k-NN
with W-NMF. Columns represent the ground truth
and lines predicted labels. Labels: athletism (a),
cricket (c), football (f), rugby (r) and tennis (t).

English target vocabulary

a c f r t
a 21 0 0 0 0
c 0 25 0 0 0
f 0 0 50 4 1
r 0 0 3 26 0
t 0 0 0 0 19

French target vocabulary

a c f r t
a 18 0 1 0 2
c 0 22 3 0 2
f 3 0 44 5 6
r 0 3 3 25 1
t 0 0 2 0 9

Table 4: 10 French words closest to some English
words according to the ground metric

football
football supporters championnat sportives
sportifs joueurs sportif jeux matches sport

bank
banque banques bei bancaire federal bank
emprunts reserve crédit bancaires

tennis
bienfaiteurs murray ex-membre ballet
b92 sally sylvia markovic hakim socialo-
communiste

closest to some English query words according to the
ground metric. While the closest words to football and
bank are semantically related to their query word, the
closest words to tennis are not. This illustrates how
our method relies on the ground metric, given by word
embeddings in this case.

5 Conclusion

We show how to efficiently perform dictionary lean-
ing and NMF using optimal transport as the data fit-
ting term, with an optional entropy positivity barrier.
Our method can be applied to large datasets in high
dimensions and does not require any assumption on
the cost matrix. We also show that with this data
fitting term, the reconstruction DΛ can use different
features than the data X. Other than our application
to cross-language semantic analysis, this can be used
for example to reduce the number of target features
by quantization for the dictionary while keeping the
original features for the dataset.

While we only consider entropy as a barrier for pos-
itivity in this work, our approach can be generalized
to other regularizers, as long as the gradient of R? or
its proximal operator can be computed efficiently. We
believe that extensions to other classes of regularizers
is an interesting area for future work.
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