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Abstract This paper explores solutions to the problem

of regularized projections with respect to the optimal

transport metric. Expanding recent works on optimal

transport dictionary learning and non-negative matrix

factorization, we derive general purpose algorithms for

projecting on any set of vectors with any regularization,

and we further propose fast algorithms for the special

cases of projecting onto invertible or orthonormal bases.

Noting that pass filters and coefficient shrinkage can

be seen as regularized projections under the Euclidean

metric, we show how to use our algorithms to perform

optimal transport pass filters and coefficient shrinkage.

We give experimental evidence that using the optimal

transport distance instead of the Euclidean distance

for filtering and coefficient shrinkage leads to reduced

artifacts and improved denoising results.

Keywords Optimal Transport, Coefficient Shrinkage,

Sparse Decomposition, Wavelet Thresholding, Denoising

1 Introduction

Coefficient shrinkage has long been a staple method

for signal denoising (Donoho, 1995; Kaur et al., 2002).

In its simplest form, it consists in soft-thresholding

the coefficients of a signal in the spectral domain (e.g.
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wavelet or Fourier), before going back to the signal

domain. Let x be a vector representing a signal, D be

the matrix representing a wavelet or Fourier basis, and λ

be the coefficients of x in the spectral domain (x = Dλ).

Coefficient shrinkage of x is Dθα(λ) = Dθα(D−1x), for

some α ≥ 0 and with θα := λ 7→ sign(λ)(λ− α)+. If D

is orthonormal, which is the case for orthogonal wavelets

and the discrete cosine transform, coefficient shrinkage

amounts to the lasso problem:

θα(x) = argmin
λ
‖x−Dλ‖22 + α‖λ‖1.

More generally, this problem falls in the scope of regu-

larized least square problems:

min
λ
‖x−Dλ‖22 +R(λ),

which can also be thought of as a regularized Euclidean

projection, where ‖x − Dλ‖22 is a closeness term and

R is used to enforce desired properties on λ. Using

an `1 norm as R leads to coefficient shrinkage, while

an indicator function leads to pass-type filtering for

example.

Using the Euclidean distance as the signal closeness

term leads to artifacts on the reconstructed image Dλ.

For example, filtering out high frequency components

in the Fourier domain tends to create a “wave” pattern

around sharp edges (Figure 1). In order to reduce these

artifacts we propose to use instead the optimal transport

distance, which instead of comparing images pixel-by-

pixel, compute the best way to “transport” the intensity

of the pixels of an image to fit the other image. This

means that images are compared overall, instead of

separately for each pixel, yielding less artifact on the

reconstructed image, as shown in Figure 1c compared

to Figure 1b.

https://link.springer.com/article/10.1007/s00371-020-02029-7
https://link.springer.com/article/10.1007/s00371-020-02029-7
https://link.springer.com/article/10.1007/s00371-020-02029-7
http://www.nomadai.org/
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(a) Original image (b) Euclidean filter (c) Optimal transport filter

Fig. 1: Effect of using the Euclidean or optimal transport distance as the closeness term for low pass filtering.

The optimal transport distance (a.k.a. the earth

mover’s distance or the Wasserstein distance) in its gen-

eral form is a distance between probability measures.

It has recently gained a lot of attention as a loss in

optimization problems, with applications such as classi-

fication (Kusner et al., 2015; Frogner et al., 2015) and

image generation (Arjovsky et al., 2017; Seguy et al.,

2018). Optimal transport has also been used to tackle

image processing problems, including Tartavel et al.

(2016) for texture synthesis and image reconstruction,

Rabin and Papadakis (2015) for foreground extraction

or Solomon et al. (2015) for image interpolation.

In this paper, we study regularized projection of an

image onto a fixed basis, or dictionary, where the recon-

struction error is evaluated using the optimal transport

distance. Projection onto a dictionary with respect to
the optimal transport distance has been studied for mu-

sical note transcription (Flamary et al., 2016), and in

the context of dictionary learning and non-negative ma-

trix factorization (Sandler and Lindenbaum, 2009; Rolet

et al., 2016, 2018). However these works did not consider

the effect of different regularizers, sparsity-inducing or

otherwise, nor did they analyze the qualitative effect of

using the optimal transport as the reconstruction error

for image processing specifically.

Our contributions. We give simple conditions on D

and R for existence and unicity of the optimal transport

regularized projection. We derive a method to compute

this projection that can be used for any convex regular-

izer R and dictionary D. We further give fast algorithms

for special cases depending on the properties of R and D.

This allows us to perform pass-type filtering and sparse

decomposition of images onto wavelet or Fourier bases,

which was not possible using the previously existing

methods of Rolet et al. (2016). Finally, we show how

using the optimal transport distance as the reconstruc-

tion error leads to reduced artifacts for same level of

sparsity when compared to the Euclidean distance.

This paper is organized as follows: in Section 2 we

define the optimal transport distance between images, as

well as the approximation that we use in order to make

our problems tractable, and we introduce previous work

in optimal transport dictionary learning. In Section 3

we proceed to give computational methods for solving

optimal transport regularized projection. Building on

these methods, we show in Section 4 how to perform

optimal transport hard and soft thresholding and pass-
type filtering, and compare optimal transport to the

Euclidean distance in each case.

Notations

We denote matrices in upper-case, vectors in bold lower-

case and scalars in lower-case. If M is a matrix, M>

is its transpose and Im(M) is the image of the linear

map defined by M . 1n denotes the all-ones vector in Rn;

when the dimension can be deduced from context we

simply write 1. For two matrices A and B of the same

size, we denote their inner product 〈A,B〉 := tr
(
A>B

)
,

and their element-wise product as A�B. For a convex

function f , f∗ denotes its convex conjugate, defined as

f∗(x) = max
y
〈x,y〉 − f(y).

2 Background

In this section we first formalize the definition of opti-

mal transport that we use throughout this paper and

its regularized version. We then introduce relevant pre-

vious works in optimal transport non-negative matrix
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factorization, which we build upon in further sections

to perform optimal transport coefficient shrinkage.

2.1 Exact Optimal Transport

Definition. Let x ∈ Rm+ , y ∈ Rn+. We define the

polytope of transportation matrices between x and y as

U(x,y) =

{
T ∈ Rm×n+

∣∣∣∣∣ T1 = x

T>1 = y

}
.

Note that U(x,y) is non-empty only if x>1 = y>1

and x,y ≥ 0. Let C ∈ Rm×n+ be a matrix, where cij
represents the cost of of moving weight from xi to yj ,

then the optimal transport cost between x and y is

defined as:

OT(x,y) =

+∞ if U(x,y) = ∅
min

T∈U(x,y)
〈T,C〉 otherwise. (1)

For a more complete introduction to optimal trans-

port and an in-depth view of its application to different

computational methods, we refer the reader to Peyré

et al. (2019).

Optimal transport distance between images. In

this paper, we use optimal transport to compute dis-

tances between images. We either have grayscale images,

or color images for which we treat each color component

independently. In any case, x is a vector representing
intensity levels for each pixel of an n ×m image, i.e.

xi is the intensity of the pixel located at coordinates

C(i) := (bi/mc, i%m) in the image, where b·c is the

integer part and % is the remainder operator. We use

as the cost matrix C the matrix of pairwise squared

Euclidean distances between the locations of the pixels,

that is cij = ‖C(i)− C(j)‖22.

Our goal in this paper is to minimize a function of

the form

fx(λ) = OT(x, Dλ) +R(λ),

where x is a vector representation of an image in Rn+,

D a basis of Rn, g(λ) = OT(x, Dλ) a data-fitting term

for the projection on D and R a regularizer. Direct opti-

mization of such a function is tedious, because OT(x, ·)
is not differentiable, and the computation of a subgra-

dient requires solving the linear program defined in

Equation (1), for which best known algorithms run in

O(n3 log n) (Orlin, 1997).

In order to alleviate this problem, we use a smooth

approximation which is obtained by adding an entropy

term to the optimal transport problem.

2.2 Entropy Regularized Optimal Transport

We propose to use an entropy regularized version of the

optimal transport to solve optimization problems involv-

ing OT(x, ·). The advantage of using this regularized

optimal transport is twofold. First, similarly to Cuturi

and Peyré (2016); Rolet et al. (2016), we take advantage

of its smooth convex conjugate to derive dual problems

that can be solved efficiently. Additionally, it lets us

use further accelerations due to the special form of the
cost matrix C in the case of optimal transport between

images.

Definition. The entropy regularized optimal transport

was proposed by Cuturi (2013) as a fast approximation

of the optimal transport. For x,y ∈ Rn+, γ > 0, we define

the entropy regularized optimal transport between x

and y as:

OTγ(x,y) =

+∞ if U(x,y) = ∅
min

T∈U(x,y)
〈T,C〉+ γE(T ) otherwise,

(2)

where E(T ) := 〈T, log(T )〉 is the entropy of T .

In recent years, entropy-regularized optimal trans-

port has gained popularity as a proxy for the optimal

transport as a loss in optimization problems (Gramfort

et al., 2015; Frogner et al., 2015; Seguy et al., 2018)

due to both its simplicity and good properties with re-

spect to convex optimization. Indeed, contrary to exact

optimal transport, the entropy regularized version is

differentiable everywhere, and the simple form of its

convex conjugate allows to derive tractable duals for

many optimization problems involving OTγ .

Convex conjugate. Let OT?γ(x, ·) be the convex con-

jugate of OTγ(x, ·):

OTγ(x,y) = max
h
〈y,h〉 −OTγ(x,h).

Cuturi and Peyré (2016) showed that OT?γ(x, ·) can be

expressed in closed form. Furthermore it is differentiable,

its gradient is γ-Lipschitz and can also be expressed in

closed form:

OT?γ(x,y) = γ (E(x) + 〈x, logKα〉) ,
∇y OT?γ(x,y) = α�

(
K>

x

Kα

)
,

where K := e−C/γ and α := ey/γ .

Rolet et al. (2016) make use of the simple form of

this convex conjugate and its gradient to derive fast a

algorithm for the optimal transport dictionary learning

problem. Section 3.2 showcases the computational gain
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of using dual methods over primal ones on a simple

regression problem.

The bottleneck in computing these formulas is the

multiplication with matrix K. Supposing we are working

with square images of size m, then x is of size n = m2

and the complexity of multiplying with matrix K is

O(n2) = O(m4). Moreover storing matrix K also has a

space complexity of O(n2).

Accelerations. Since we use as a the cost matrix C

the matrix of pairwise Euclidean distances on a grid rep-

resenting the pixel locations of images, multiplications

with matrix K and K> are simply Gaussian convolu-

tions of standard deviation σ2 = γ (Solomon et al.,

2015, ¶5.). This allows us to compute OT?γ in O(n log n)

instead of O(n2), and to not store the matrix K in

memory. Figure 2 shows experimental times for multipli-

cating K with a vector, implementing this operation as

either a convolution or an actual matrix multiplication.

For images of size lower or equal to 16, the matrix multi-

plication may be faster. This can be useful for example

in dictionary learning or any other task in which images

are divided into small patches. In this paper however we

consider full images, accordingly we use the acceleration

of Solomon et al. (2015) in all the results we report.
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Fig. 2: Computational time for multiplication with K

for a square image with respect to its width (log-scale)

Effect of using the entropy-regularized optimal

transport. Since the entropy regularized optimal trans-

port is not a distance, given an input x, the point y

which minimizes OTγ(x,y) is not x:

Lemma 1 (Closest point) Let x ∈ Rn+,

argmin
y∈Rn+

OTγ(x,y) =
K>x
K1

Proof Let g := x 7→ 0, Fenchel duality tells us that

min
y

OTγ(x,y) + g(y) = max
h=0

OT∗γ(x,h)

= OT∗γ(x,0)

The primal-dual relationship gives us

y? = ∇OT∗γ(x,0) = 1�
(
K>

x

K1

)
.

In the case where x is an image and C is the matrix of

squared Euclidean distances between pixel locations, this

means that the closest point to any point with respect to

the regularized optimal transport is simply a Gaussian

blur of standard deviation σ2 = γ, rescaled to have the

same total intensity as the original image. Based on

this observation, we set the regularization parameter γ

of the entropy-regularized optimal transport to 0.1 in

all of our results of Section 4, so that the closest point
would be a blur of standard deviation 0.1 pixel, which

is invisible to the naked eye.

In the case where x is not an image, Blondel et al.
(2018) gives lower and upper bounds for the approx-

imation given by a regularized transport, where the

regularization can be the entropy or the squared Eu-

clidean norm.

2.3 Optimal Transport Dictionary Learning

Regularized projection on a linear subspace can be seen

as a part of the wider problem of regularized dictionary

learning. Let X ∈ Rn×t+ and k ∈ N, the dictionary

learning problem is

min
λ∈Rk×tD∈Rn×k

∑
i

`(xi, Dλi) +R1(λ) +R2(D). (3)

Particular cases where ` is either the Euclidean dis-

tance or the Kullback-Leibler divergence have been stud-

ied extensively. In particular, restricting λ and D to

non-negative values lead to non-negative matrix factor-

ization (NMF, Lee and Seung, 2001). Sparsity-inducing

regularizations has been shown to yield good results

for classification (Ataee and Mohseni, 2020), and image

denoising and inpainting (Mairal et al., 2009), .

The optimal transport projection problem that in-

terests us in this work is the sub-problem of Problem 3

where the dictionary D fixed and ` = OTγ . Sandler

and Lindenbaum (2009) showed that the optimal trans-

port projection problem when γ = 0 and R = 0 is a

linear program. However this linear program is in very

high dimension with many constraints and is considered

non-tractable even when n is relatively small.
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Rolet et al. (2016) used the conjugate of OTγ to

get dual problems that can be solved efficiently. Their

method was also used in Rolet et al. (2018) to perform

NMF on sound data in the STFT domain, leading to

good results in source separation and denoising. This

approach is especially suited to image processing, since

it lets us use the accelerations discussed in Section 2.2.

3 Optimal Transport Regularized Projection

We now show how to solve regularized optimal transport
projection problems.

Let us fix D ∈ Rn×k+ , x ∈ Rn+, and let R be a convex
function. The regularized optimal transport projection

of x onto D is the solution of

min
λ∈Rk

OTγ(x, Dλ) +R(λ). (4)

Rolet et al. (2016) proposed fast dual methods for

this problem either without a regularizer, or where R

is the entropy in order to enforce non-negativity, in

the context of NMF. We extend their methods for con-

vex regularizers R with a smooth convex conjugate R∗.
Further more we propose new methods for solving this

problem when R∗ is not smooth but D is orthonormal

or simply invertible. These methods work as long as

we have access to the proximal operator or R∗, either

through a formula or a tractable algorithm. Finally we
propose a general method which only requires a com-

putable proximal operator for R.

3.1 Existence and unicity

We start by giving simple existence and unicity condi-

tions for the solutions of Problem 4. Let

f : λ 7→ OTγ(x, Dλ).

We can get simple existence conditions for the solu-

tions of Problem 4 based on the domains of f and R,

which we call domf and domR respectively.

Proposition 1 If D is full rank and Im(D)∩Rk+ 6= {0},
then domf is compact and non-empty.

Proof Suppose that D is full-rank and Im(D) ∩ Rk+ 6=
{0}. Let a ∈ Im(D) ∩ Rk+ such that λ 6= 0. Let b =
‖x‖1
‖a‖1a, we have Db ≥ 0 and ‖Db‖1 = ‖x‖1 so b ∈ domf

and domf is not empty.

Let us now prove that domf is compact. domf ={
λ|Dλ ≥ 0, 1>Dλ = 1>x

}
is a polyhedron defined as

an intersection of an hyperplane and closed half-spaces.

It is thus closed and as a subset of Rk, it is compact iif

it is unbounded, which for a polyhedron is equivalent

to not containing any half line.

Let δ be a half-line, we will show that δ is not in-

cluded in domf . There exist some vectors a, b ∈ Rk
with b 6= 0, such that δ = {a+ βb|β ≥ 0}.

Since D is full rank, Db 6= 0. Let 0 < i ≤ k such

that (Db)i 6= 0. There are three possible cases:

– a is not in domf , then δ is not included in domf .

– a ∈ domf and (Db)i > 0:

Since a ∈ domf , we now that (Da)i ≤ ‖x‖1. Let

β = ‖x‖1−(Da)i+1
((Db)i)

, (D(a+ βb))i = ‖x‖1 + 1 >

‖x‖1, so a + βb is not in domf and δ is not

included in domf .

– a ∈ domf and (Db)i < 0:

Since a ∈ domf , we now that (Da)i ≥ 0. Let

β = −(Da)i−1
((Db)i)

, (D(a+ βb))i = −1 < 0, so a+βb

is not in domf and δ is not included in domf .

This shows that δ is not included in domf , As a closed

polyhedron which contains no half-line, domf is bounded

and thus compact. ut

Proposition 2 (Existence) Let R be a convex func-

tion. If domR ∩domf is not empty and compact, then

Problem 4 has a solution.

Proof The conditions directly imply that Problem 4 is

a convex problem over a non-empty compact set, so it

has a solution. ut

Unicity of a solution is follows from strict convexity

of either f or R.

Proposition 3 (Unicity) Let R be a convex function,

γ > 0. If D is full rank, Problem 4 has at most one

solution.

Proof Suppose that D is full-rank, then it defines an

injective linear map. Since γ > 0, OTγ(x, ·) is strictly

convex. f is then strictly convex, and since R is convex

the objective of Problem 4 is strictly convex. As a result

it can have at most one solution. ut

The previous result is only valid for the entropy-

regularized optimal transport. We can get unicity of a

solution with exact transport by restricting R to strictly

convex functions:

Proposition 4 (Unicity II) Let R be stricly convex

function, γ ≥ 0. Problem 4 has at most one solution.

Proof OTγ(x, ·) is convex, so f is convex too and the

objective of Problem 4 is strictly convex. As a result it

can have at most one solution. ut
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In many of our applications, D is invertible and

γ > 0. Proposition 3 then implies that Problem 4 has

at most a solution. According to Proposition 1, domf is

compact and non-empty. If we further have domR = Rk
for example, domR ∩domf is not empty and compact

and Problem 4 has a solution according to Proposition 2.

In the remainder of this paper, we assume existence

and unicity for the wording of our results. However these

results hold whether existence and unicity conditions

are actually satisfied or not.

3.2 Dual Problem

We now derive a dual problem for Problem 4 which is

the basis of most of the methods used in this paper.

Proposition 5 The solution λ? of Problem 4 satisfies

the primal-dual relationship

Dλ? = ∇OT∗γ(x,h?) (5)

where h? is the solution of the dual problem

min
h∈Rn

OT∗γ(x,h) +R∗(−D>h). (6)

Proof The proof follows the same path as in Rolet

et al. (2016), where R was the non-negative entropy.

We rewrite Problem (4) as:

min
λ∈Rk
p∈Rn+
Dλ=p

OTγ(x,p) +R(λ).

It is a convex problem with linear constraints so
strong duality holds, the problem is then:

max
h∈Rn

min
λ∈Rk
p∈Rn+

OTγ(x,p)− 〈h,p−Dλ〉+R(λ).

By definition of OT∗γ , we get

max
h∈Rn

min
λ∈Rk

−OT∗γ(x,h) + 〈h, Dλ〉+R(λ) (7)

− min
h∈Rn

max
λ∈Rk

OT∗γ(x,h) +
〈
−D>h,λ

〉
−R(λ) (8)

Noting that the right side is the convex conjugate of R,

we get the dual problem:

− min
h∈Rn

OT∗γ(x,h) +R∗(−D>h). (9)

Problem (6) is simply the Fenchel dual of the original

problem, the primal-dual relationship in Equation (5)

can be recovered from the first order conditions of Prob-

lem 7 with respect to variable h.

If R∗ is smooth and its gradient can be computed

efficiently, we can solve Problem (6) with an accelerated

gradient method (Nesterov, 1983).

3.3 Saddle Point Problem

If R∗ is not smooth, or if its gradient is expensive to

compute, we can still compute the projection by finding

the saddle point in Problem (8). We propose to do this

with a primal-dual approach such as Condat (2013) or

Lorenz and Pock (2015). We use the algorithm defined

in Theorem 9 of Lorenz and Pock (2015) to make use

of preconditioning. Following their notations, we set:{
Q = OT∗γ(x, ·), G = 0, K = −D>,
F ∗ = R, P ∗ = 0, αk = 0, ∀k.

This leads to updates:


hk+1 = hk − τ(∇OT∗γ(x,hk)−Dλk)

ξk+1 = 2hk+1 − hk

λk+1 = proxσR(λk − σD>ξk+1),

where proxf denotes the proximal operator of a function

f . Solving the saddle-point problem in that way tends
to be slow compared to full dual approaches, as we show

in Section 3.5. We now focus on special conditions which

allow to expand on Proposition 5.

3.4 Special Case: Invertible Dictionary

In the case where R∗ is not smooth, we cannot solve

Problem (6) directly with first order methods. However

if D is invertible we can rewrite the problem and solve

it with proximal methods.

Proposition 6 Let D ∈ Rn×n be an invertible matrix.

The solution λ? of Problem 4 satisfies

λ? = D−1∇OT∗γ(x,−D>−1g?) (10)

where g? is the solution of

min
g∈Rn
−D>h=g

OT∗γ(x,−D>−1g) +R∗(g). (11)

Proof Problem 11 is obtained by the change of variable

−D>h = g in Problem 6. This same change of variable

gives us Dλ? = ∇OT∗γ(x,−D>−1g?).

Assuming that we have access to the proximal op-

erator of R∗, we can solve Problem 11 efficiently with

a proximal method such as FISTA(Beck and Teboulle,

2009).

Orthonormal dictionary. In the case where D is

orthonormal, the problem of learning the coefficients

can be solved with the invertible special case.
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Table 1: Algorithms available based on the properties of R and D

Conditions Method Gradient Proximal operator Primal-dual relationship

R∗ differentiable
accelerated gradi-
ent1

∇OT∗γ(x,h)−D∇R∗(−D>h) Not used Dλ? = ∇OT∗γ(x,h?)

D invertible FISTA2 −D−1∇OT∗γ(x,−D−1>g) proxR∗(g) λ? = D−1∇OT∗γ(x,−D>−1g?)

D orthonormal FISTA2 ∇OT∗γ(x,h) −D proxR∗(−D>h) λ? = D>∇OT∗γ(x,h?)

None
forward-backward
splitting3 ∇OT∗γ(x,h) proxR(h) λ? is already available

Another solution arises if we rewrite Problem (6) as

min
h∈Rn

OT∗γ(x,h) +Π(h), (12)

where Π(h) = R∗(−D>h). We can solve this new prob-

lem with FISTA. Indeed, since D is orthonormal, the

proximal operator proxΠ of Π can be computed easily.

By definition we have

proxΠ(h) = argmin
y∈Rn

‖h− y‖2 −R∗(−D>y).

Using the change of variable z = −D>y, we have

proxΠ(h) =−D argmin
z∈Rn

‖h+Dz‖2 −R∗(z).

Since D is orthonormal, it follows that

‖h+Dz‖2 = ‖ −D>h−D>Dz‖2

= ‖ −D>h− z‖2.

We can thus compute the proximal operator of Π

from that of R∗:

proxΠ(h) =−D argmin
z∈Rn

‖ −D>h− z‖2 −R∗(z)

=−D proxR∗(−D>h).

The primal-dual relationship becomes

λ? = D>∇OT∗γ(x,h?). (13)

We sum up our proposed methods in Table 1.

1 Nesterov (1983)
2 Beck and Teboulle (2009)
3 Lorenz and Pock (2015)

3.5 Time Comparisons

Primal VS dual algorithms. In order to compare

computation times between a direct primal method and

our dual algorithms, we have to select a problem for

which similar algorithms can be used, FISTA in this

case. In particular we need a problem which can be
divided into a smooth part and a part for that has a

tractable proximal operator. Let us consider the simple

following problem:

min
λ∈Rk

1>Dλ=1>x
Dλ≥0

OTγ(x, Dλ) + α‖λ‖22,

where D is the an orthonormal matrix4. We can project

any λ on the constraint 1>Dλ = 1>x by projecting

Dλ on the non-negative part of the `1 sphere of radius

1>x, and then applying D> to the result. The objective
is differentiable, we compute the optimal transport part

and its gradient with the Sinkhorn algorithm (Cuturi,

2013). This algorithm’s computational bottleneck is also

the multiplication with K = e
C
γ , so it benefits from the

convolution acceleration defined in Section 2.2 as much

as our dual methods do.
We also solve the problem with the invertible case of

Section 3.4, with R(λ) = α‖λ‖22. We then have R∗(h) =
α
4 ‖h‖22 and proxR∗(h) = h

1+α/2 .

Figure 3 shows a time comparison of the FISTA

algorithm used to solve the primal or dual problem,

with either a fixed step-size or a step-size chosen by

backtracking line-search. As the figure shows, our dual

algorithm is orders of magnitude faster in any of the

settings. For both methods, the backtracking line-search

heuristic for choosing the step-size leads to faster con-

vergence. However for the primal method, the precision

σ to which we solve the regularized transport problem

has a direct influence on the quality of the gradient. As

a result backtracking line-search is not able to select

4 Since D is orthonormal, the problem is actually equivalent
to simply min

λ
OTγ(x,λ) + α‖λ‖22.
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Fig. 3: Optimality gap with respect to time for a simple
l2-regularized projection with a primal approach or our

dual approach. Top: FISTA with backtracking line-search.

Bottom: FISTA with a fixed step-size.

positive step-size after getting close to the optimal so-

lution when the precision of the Sinkhorn algorithm is
too low.

Saddle point VS dual algorithms. We now compare

computation time for an optimal transport regularized

projection problem using a primal-dual approach and

a fully dual approach. We perform optimal transport

coefficient shrinkage on the DCT coefficients of a 256×
256 image using our dual approaches of Section 3.4 and

the saddle point approach of Section 3.3. Although the

saddle-point approach has the advantage of being valid

for any dictionary D, Figure 4 shows that it is orders of

magnitude slower to converge than dual approaches.

4 Applications

In this section, we show how to use the fast regular-
ized projection methods we derived to perform opti-
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Op
tim
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Fig. 4: Computation time for a same sparse projection

problem with a primal-dual method or dual methods.

mal transport filtering, coefficient shrinkage and hard
thresholding. We examine qualitative and quantitative

differences of using optimal transport instead of the

Euclidean distance on different image processing tasks,

namely low-pass filtering, compressing and denoising.

4.1 Optimal Transport Filtering

Filtering is the process of setting a subset of the com-

ponents of λ to 0. Let N be the set of indices of the

components that we want to filter out, optimal transport

filtering is performed by solving

min
λ∈Rk

λi=0 ∀i∈N

OTγ(x, Dλ).

Although this problem can be solved by removing all

non-relevant columns in D and using the non-regularized

algorithm in Rolet et al. (2016), in the case of filtering

components of DCT or wavelet transforms we can make

use of our orthonormal dictionary case of Section 3.2

to get a simpler algorithm. Indeed, the filtering can be

rewritten as a regularized projection on an orthonormal

basis:

min
λ∈Rk

OTγ(x, Dλ) + FN (λ)

where

FN (λ) =

{
0 if ∀i ∈ N s.t. λi = 0

∞ otherwise.

The convex conjugate of FN is

F ∗N (h) =

{
0 if ∀i ∈ N s.t. λi = 0

∞ otherwise.



Fast Optimal Transport Regularized Projection and Application to Coefficient Shrinkage and Filtering 9

Fig. 5: Low-pass filtering of the DTC coefficients. Left: original image; Center: Euclidean filtering; Right: Optimal
Transport filtering. Top: keeping the 1/16th lowest frequencies. Bottom: keeping the 1/4th lowest frequencies

F ∗N (h) is not differentiable, however its proximal opera-

tor is easy to compute:

proxF∗N (h)i =

{
0 if i ∈ N
hi otherwise.

which is simply a regular filter on the complementary

components to those described by N . Thus we can solve

the dual problem:

min
h∈Rn

OT∗γ(x,h) + F ∗N (−D>h),

and recover λ? through the primal-dual relationship:

λ? = D>∇OT∗γ(x,h?).

We use this method to perform low-pass filters on

images, and compare the results with regular low-pass

filtering, which can be viewed as a regularized projection

w.r.t. the Euclidean distance with the same regularizer.

Experimental results. Figure 5 shows the result of

applying a low-pass filter on a 256× 256 image, keeping

either the 1/16th or 1/4th coefficients of its discrete co-

sine transform (DCT) of lowest frequency. We set the

regularization parameter γ of the entropy-regularized

optimal transport to 0.1, meaning that an optimal trans-

port pass filter of full bandwidth would correspond to

a Gaussian blur of standard deviation 0.1 pixel (see

Section 2.2), which is almost invisible to the naked eye.

Both filtering methods show the wave-like patterns

around edges in the image typical of DCT filtering,

however these are more pronounced in the case of the

classical, “Euclidean” filtering.

4.2 Coefficients Shrinkage and Thresholding

Let x ∈ Rn+ be a non-negative vector and D ∈ Rn×n
be an invertible matrix, typically representing a dis-

crete wavelet or fourier basis. Coefficient shrinkage of

x usually refers to soft-thresholding of the coefficients

λ = D−1x defined as:

Sα(λ) = sign(λ)�max {|λ| − α, 0} .

In the case where D is orthonormal, Sα(D−1x) is

also the solution of the l1 regularized Euclidean projec-

tion on D:

Sα(D−1x) = argmin
λ
‖x−Dλ‖22 + α ‖λ‖1 .

Hard thresholding on the other hand, is defined as

Hα(λ)i =

{
λi if |λi| > α

0 otherwise.
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Fig. 6: Compression with Euclidean or Optimal Transport hard thresholding with biorthogonal spline wavelets of
order 2 and dual order 4. Sparsity is set to 95%. Left: original image; Center: Euclidean hard thresholding; Right:

Optimal Transport hard thresholding. Top: biorthogonal spline wavelets decomposition. Bottom: DCT decomposition.

Non-zero coefficients are the same for both hard and

soft thresholding. If D is orthonormal,Hα(D−1x) is also

the solution of the l0 regularized euclidean projection

on D:

argmin
λ
‖x−Dλ‖22 + α ‖λ‖0 .

Optimal transport shrinkage. We mirror this defini-

tion of shrinkage to define the optimal transport shrink-

age of x as

argmin
λ

OTγ(x, Dλ) + α‖λ‖1

for some α > 0. This problem can be solved efficiently

through one of its dual, i.e. Problem (11) or Problem

(12) with R := λ 7→ α‖λ‖1. The convex conjugate of

R∗ of R is an indicator of the l∞ ball of radius α, and

its proximal is a projection on that same ball:

R∗(h) =

{
0 if ‖h‖∞ ≤ α
∞ otherwise,

prox∗R(h) = sign(h)�min(|h|, α).

We recover λ? from the primal-dual relationships

defined in Equation (10) or Equation (13). Because of

machine precision, and of the fact that we can never

solve the dual exactly, the coefficients we recover are

not sparse, but a lot of them are very close to 0. We

can however recover the sparsity pattern of λ? with the

first order conditions for Problem (8) with respect to

λ. Indeed, these first order conditions are −D>h? ∈
∇R(λ?), i.e.:

−D>h? ∈
{
a ∈ Rk

∣∣∣∣∣− α ≤ ai ≤ α if λ?i = 0

ai = sign(λ?i )α otherwise

}
.

Accordingly, we can set λ?i to 0 for all i such that∣∣(D>h?)i∣∣ < α.

Since ‖ · ‖1 is convex, has full domain and D is

full rank, the optimal transport coefficient shrinkage

problem has a unique solution according to Proposition 3

and Proposition 2.

Optimal transport hard thresholding. Since the

`0 norm is not a convex function, we do not have a

method to solve the `0-regularized optimal transport

projection. We define hard thresholding of the coeffi-

cients by analogy with the Euclidean case, based on the

fact that the sparsity pattern for hard and soft thresh-

olding is the same. In other words, hard thresholding

corresponds to a pass filters on the non-zero coefficients
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(a) Original image (b) Noisy image (c) VisuShrink

(d) SureShrink (e) BayesShrink (f) NormalShrink

(g) newThresh, α = 3.7 (h) OT hard thresholding (i) OT Shrinkage

Fig. 7: Denoising of salt-and-pepper noise of level σ = 10% with Daubechies wavelets of order 2.

of the soft-thresholding operator. In terms of optimiza-

tion problems, this means that if λ? is the solution

of

min
λ
‖x−Dλ‖22 + α ‖λ‖1 ,

and denoting N = {i s.t. λ?i = 0}, then

Hα(D−1x) = argmin
λ

∀i∈N , λi=0

‖x−Dλ‖2 .

Similarly, for α > 0, we define the optimal transport

hard thresholding as the optimal transport pass filter

on the non-zero coefficients of

argmin
λ

OTγ(x, Dλ) + α‖λ‖1.

We compute the pass filter using the method defined

in Section 4.1. Hard thresholding allows us to get better

results when the level of noise on the signal is low. We

analyze in the remainder of this section the effect of using

optimal transport instead of the usual implicit Euclidean

distance when performing hard and soft thresholding

for either compression or denoising.
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Noise σ normalShrink sureShrink bayesShrink visuShrink newThresh OT hard OT soft

Salt & pepper
5% 0.384 0.353 0.347 0.318 0.328 0.520 0.545
10% 0.333 0.257 0.277 0.191 0.238 0.403 0.441

15% 0.259 0.229 0.278 0.114 0.173 0.319 0.350

Gaussian
0.2 0.641 0.706 0.704 0.403 0.533 0.666 0.701
0.3 0.532 0.604 0.600 0.312 0.424 0.581 0.613

0.4 0.459 0.525 0.523 0.256 0.357 0.505 0.537

(a) SSIM

Noise σ normalShrink sureShrink bayesShrink visuShrink newThresh OT hard OT soft

Salt & pepper
5% 18.826 16.965 16.752 20.140 20.212 22.086 22.911

10% 19.751 16.256 16.996 18.535 19.084 20.631 21.077
15% 19.157 17.310 18.610 17.310 18.069 19.343 19.781

Gaussian
0.2 25.123 25.903 25.849 22.177 23.775 24.844 25.698
0.3 23.594 24.163 24.172 20.889 22.288 23.308 24.190

0.4 22.644 23.098 23.097 20.054 21.307 22.328 23.171

(b) pSNR

Table 2: Denoising scores for different wavelet thresholding methods

Compressing. Hard thresholding can be used to per-

form compressing, where the goal is to represent an

image with as few coefficients as possible, while retain-

ing good image quality.

Figure 6 shows the effect of optimal transport and

Euclidean hard thresholding on the coefficients of either

biorthogonal spline wavelets (Cohen et al., 1992) or

DCT decomposition, where 5% of the coefficients are

kept. Again we observe higher levels of artifacts with

Euclidean thresholding.

For the biorthogonal spline wavelet decomposition,

these artifact are especially visible in low contrast areas

such as the background. As a result the fence-like struc-

ture at the top of the image has almost disappeared with

Euclidean thresholding, but is still visible with optimal

transport.

Denoising. We now examine how optimal transport

thresholding compares to other wavelet coefficient shrink-

age methods for image denoising. Many of the standard

wavelet methods for image denoising perform either a

soft or hard thresholding on the coefficients, which makes

them inherently Euclidean sparse projection methods.

Their main difference is on how to select the threshold.

We compare our methods to visuShrink (Donoho and

Johnstone, 1994), which selects one global threshold for

the image, and adaptive methods which select a thresh-

old for each wavelet decomposition level: sureShrink

(Donoho and Johnstone, 1995), bayesShrink (Chang

et al., 2000) and normalShrink (Kaur et al., 2002). We

also compare our method with Dehda and Melkemi

(2017), a thresholding method which uses a smooth

thresholding function which can be seen as a trade-off

between soft and hard thresholding. We call this method

“newThresh” in the experiment.

With optimal transport, adaptive thresholding could

be achieved by using either a weighted `1-norm or a

block-sparse regularizer. However we found that this

doesn’t improve significantly upon simple `1-norm reg-

ularization and we only report the results of ”global”

thresholding here for simplicity.

For this experiment, we corrupt a 256× 256 image

with either a Gaussian or a salt-and-pepper noise with

several noise levels σ. In the case of the Gaussian noise,

σ is the variance and is taken to be 0.2, 0.3 or 0.4
times the mean intensity of the image. For the salt-and-

pepper noise, σ ∈ {5%, 10%, 15%} is the proportion of

pixels that are set to 0, and the same number are set

to the maximum intensity (255). We perform coefficient

shrinkage on the coefficients of Daubechies wavelets of

order 2 (Daubechies, 1992) of the noisy image.

Figure 7 shows the images produced by the differ-

ent thresholding methods for a salt-and-pepper noise.

Similarly to the low-pass filtering and compression exper-

iments, optimal transport based thresholding shows less

wavelet artifacts. Hard thresholding appears to produce

images that are sharper, but also more corrupted.

Table 2 reports the pSNR and SSIM (Wang et al.,

2004) scores for each method and each noise. Our meth-

ods and newThresh each have a free parameter. For

newThresh, we report the best score among 15 candi-

date shape parameters α in a log-scale interval from

1e − 4 to 1e4. For optimal transport methods, we re-

port the best score among 10 candidate regularization

parameters α in the interval from 0.25 to 6. Optimal

transport shrinkage improves upon all other methods

for both denoising scores, except for a small intensity

Gaussian noise, for which sureShrink and baryesShrink

perform slightly better. In particular, optimal transport
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Fig. 8: Comparison of SSIM values as a fonction of sparsity. Competitors produce a single image, and are represented

as a point. Top: salt-and-pepper noise with σ = 10%. Bottom: Gaussian noise with of σ = 0.3.

brings significant improvement for a salt-and-pepper

noise.

We now investigate how sparsity of the coefficients

of the denoised image impacts the denoising score. Fig-

ure 8 plots the SSIM score with respect to sparsity for

all methods. We first observe that if we only compare

optimal transport thresholding to its Euclidean counter-
part, optimal transport achieves a higher SSIM across all

sparsities for both noises. Furthermore, we see that for

the salt-and-pepper noise, optimal transport shrinkage
achieves better results than other methods, even without

selecting the sparsity carefully: all points of the blue

curve above 40% sparsity have a better SSIM score than

competitors, excluding optimal transport hard thresh-

olding. With a Gaussian noise, which sureShrink and

bayesShrink are optimized for, we can see that optimal

transport shrinkage is still competitive, and achieves

similar results as sureShrink and bayesShrink for the

same sparsity.

With optimal transport shrinkage, the denoising out-

put for an image is not defined uniquely, but rather is

a function of sparsity (or of the regularization param-

eter). This is a good thing in a supervised setting, in

which a user can modify the regularization parameter α

until they are satisfied with the output. However it also

means that in an unsupervised, or automated setting,

we need a way to select the sparsity level based on the

image. Based on Figure 8, a simple solution would be

to pick any of the sparsities obtained by the outputs

of sureShrink, bayesShrink and normalShrink, or their

average sparsity.

5 Conclusion

In this paper we showed how to perform a regularized

projection of a signal onto a fixed dictionary with re-

spect to the optimal transport distance. We showed

that while the general saddle point method is slow, we

can get faster algorithms when either the regularizer’s

convex conjugate is differentiable or the dictionary is

invertible. This last case allows us to perform sparse

signal decomposition in various domains, including the

discrete Fourier domain or wavelets. In practice, our

results show that this optimal transport coefficients

shrinkage yields less artifacts than coefficient shrink-

age, where the signal is projected with respect to the

Euclidean distance. For image denoising, it also outper-

forms other widely used wavelet based methods such

as BayesShrink and SureShrink, especially for images
corrupted with non-Gaussian noise.

We believe this showcases the need for further re-
search in the area of optimal transport sparse projection.

In particular fast algorithms for sparse projection onto

a non-invertible dictionary would open the way to op-

timal transport sparse dictionary learning, allowing to

expand on existing results with standard optimal trans-

port dictionary learning in natural language processing

and sound processing.
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A, Nguyen A, Du T, Guibas L (2015) Convolutional

wasserstein distances: Efficient optimal transporta-

tion on geometric domains. ACM Transactions on

Graphics 34(4)
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