
Optimal Transport Dictionary
Learning and Non-negative Matrix

Factorization

Supervisor: Yamamoto Akihiro

Kyoto University Graduate School of Informatics

Antoine Rolet





To Agnès, Jean-Pascal
and Naoko





Acknowledgments

Along the course of my Ph.D. program and the writing of this dissertation, I have
had the chance of receiving a lot of help and support, to which I am deeply grateful.

I would like to especially thank my supervisors, Akihiro Yamamoto and Marco
Cuturi, who guided me throughout my Ph.D., from the building of my ph.d. project
to the submission of this work. I am also very grateful for the warm welcome they
extended me at their laboratory, along with everyone working there.

I would also like to acknowledge my all my co-authors: Marco Cuturi, Gabriel
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Abstract

Optimal transport was first formalized by Gaspard Monge in 1781, in order to solve a
simple problem: given several piles of dirt and several holes spread on the 2-d plane,
how to move the dirt to the holes in a way which minimizes work, where work is
defined as the amount of dirt moved multiplied by the length of its travel. Despite
the simplicity of its formulation, optimal transport defines a powerful distance, at the
cost of a high computational complexity. Recent advances which alleviated this com-
putational burden have led to a rise of its use in machine learning. Indeed, its ability
to leverage prior knowledge on data makes it advantageous for many tasks, including
image or text classification, dimensionality reduction and musical note transcription
to name a few. Additionally, optimal transport can tackle continuous data, and data
with different quantizations, allowing it to avoid shortcomings of other distances or
divergences in generative models and to be less sensitive to quantization noise.

In this thesis, we study the learning of linear models under an optimal transport
cost. More specifically, we address the problems of optimal transport regularized
projections on one hand, and of optimal transport dictionary learning on the other.
The optimal transport distance lets us incorporate prior knowledge on the type of
data, and is less sensitive to shift noise—as opposed to the Euclidian distance or other
divergences. We show that learning these linear models with an optimal transport
loss leads to improvement over classical losses in areas including image processing,
natural language processing and sound processing.

We start this monograph by formalizing the optimal transport distance and dic-
tionary learning in Chapter 1, as well as introducing previous works on those matters.

We proceed with the main results of our works in Chapter 2, which addresses our
proposed solution to the optimal transport dictionary learning problem. Following
previous works on dictionary learning, we solve the problem with alternate optimiza-
tion on both terms—the dictionary and the weight matrix. We give duality results
for both of the sub-problems thus defined. Computing the optimal dictionary and
coefficients through a dual problem allow us to get methods which are orders of mag-
nitude faster than primal methods. We show how adding an entropy regularization
on the dictionary and weight matrices leads to optimal transport non-negative matrix
factorization (NMF), and we discuss the computational implications of optimizing
over large datasets. In the experiment section, we compare our method to previous
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attempts at optimal transport NMF. We then compare optimal transport NMF to
Euclidean and Kullback-Leibler NMF on a topic modeling task. Finally, we showcase
how optimal transport can be leveraged to perform cross-domain tasks, bilingual topic
modeling for instance.

Building upon the results of Chapter 2, we develop a method for supervised speech
blind source separation (BSS) in Chapter 3. Optimal transport allows us to design and
leverage a cost between short-time Fourier transform (STFT) spectrogram frequencies,
which takes into account how humans perceive sound. We give empirical evidence that
using our proposed optimal transport NMF leads to perceptually better results than
NMF with other losses, for both isolated voice reconstruction and speech denoising
using BSS. Finally, we demonstrate how to use optimal transport for cross-domain
sound processing tasks, where frequencies represented in the input spectrograms may
be different from one spectrogram to another.

Lastly, we take a step back in Chapter 4 and focus on the coefficient step of the
dictionary learning process. This defines what we call optimal transport regularized
projections. Noting that pass filters and coefficient shrinkage can be seen as regu-
larized projections under the Euclidean metric, we tackle the task of extending these
methods to the optimal transport distance. This however requires us to solve an
`1-norm regularized projection, which cannot be addressed with the duals defined in
Chapter 2. We show that in the case of an invertible dictionary, we can extend these
dual, which allows us to compute optimal transport coefficient shrinkage. We give
experimental evidence that using the optimal transport distance instead of the Eu-
clidean distance for filtering and coefficient shrinkage leads to reduced artifacts and
improved denoising results.
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Chapter 1

Introduction

This thesis addresses the problem of dictionary learning and non-negative matrix
factorization (NMF) with an optimal transport cost. Dictionary learning and NMF
are matrix approximation problems, where the approximation is sought in the form
of the product of two matrices: M ' Dλ. Our focus throughout this work will be on
what ' represents. More specifically we will answer the questions: how to solve these
problem when ' means “close with respect to the optimal transport distance”, and
why would we want to do that.

The optimal transport distance, a.k.a the Wasserstein distance or the earth mover’s
distance, compares two vectors by computing an optimal way to fit one into the other.
Vectors are thus compared globally, instead of coordinate-wise as is the case with the
Euclidean distance. Moreover, we can incorporate prior knowledge on the signal or
data being compared by defining what is an optimal way to fit a vector into another.

We illustrate this in Figure 1.1, which compares the optimal transport distance
with the Euclidean distance when applied to the spectogram of a note played on a
musical instrument. Synthetic musical notes are generated by putting weight on a fun-
damental, and exponentially decreasing weights on its harmonics and sub-harmonics,
and finally convoluting with a Gaussian. Figure 1.1 shows examples of such musical
notes, and plots the different distances from the note of fundamental 0.95kHz (red
line on the left plot) to the note of fundamental 0.95kHz+σ, as functions of σ. With
optimal transport, what is measured can be thought of as the cumulative distance be-
tween each spike, whereas the Euclidean distance is almost an indicator of whether the
spike happen at the same frequency. In other words, the Euclidean distance compares
these spectrograms vertically, when optimal transport compares them horizontally,
making it less sensible to noise due to tuning, Doppler effect, coming from a different
instrument and so on.

Optimal transport as a loss in optimization problems has been used with applica-
tions such as classification [Kusner et al., 2015, Frogner et al., 2015], image genera-
tion [Arjovsky et al., 2017, Seguy et al., 2018] and domain adaptation [Redko et al.,

1



CHAPTER 1. INTRODUCTION

0.01 0.95 1.89 2.82 3.76 4.7 5.64 6.57 7.51
Frequency (kHz)

0.00

0.05

0.10

0.15

0.20

0.25

Am
 l
itu

de

(
Fundamental at 0.95 kHz
Fundamental at 1.42 kHz

-0.78 0.0 0.78 1.56 2.34 3.12
( (kHz)

0.0

0.5

1.0

1.5

Di
st
an
ce

Optimal transport cost
Entropy-regularized optimal
transport cost
Euclidean distance

Figure 1.1: Comparison between optimal transport and the Euclidean distance on
musical note spectrograms. Left: examples of two musical note spectrograms where the
fundamentals’ frequencies are separated by σ; right: Euclidean or optimal transport
distance from the red spectogram to the blue one, plotted against σ. The red spectogram
is fixed and the blue one’s fundamental varies according to σ.

Taken from Rolet et al. [2018]

2019]. It has also been used to tackle image processing problems, including Tartavel
et al. [2016] for texture synthesis and image reconstruction, Rabin and Papadakis
[2015] for foreground extraction or Solomon et al. [2015] for image interpolation.

To the best of our knowledge, the first optimal transport for dictionary learning
method was developed by Sandler and Lindenbaum [2009] in the context of NMF.
Due to the high computational cost of the problem however, they had to consider
a proxy for optimal transport [Shirdhonkar and Jacobs, 2008] which only gives a
lax approximation that cannot be controlled to get infinitely close to exact optimal
transport. This approximation also only works on special cases of optimal transport,
which limits the range of its applications. We expanded their work by proposing to
use instead regularized optimal transport in Rolet et al. [2016]. This allows us to get
methods which are orders of magnitude faster, and for which the user can control
closeness to the exact optimal transport through the regularization strength. It also
allows us to perform “cross-domain” dictionary learning, which was not possible using
the method of Sandler and Lindenbaum [2009]. We later expanded and refined these
method, with an application to Blind Source Separation in Rolet et al. [2018] and
optimal transport coefficient shrinkage in Rolet and Seguy [2021]. This thesis is based
on these three works.

We start this Chapter by formalizing optimal transport and studying some of
its properties, in particular regarding optimization. We then move onto discussing
previous works on dictionary learning and NMF, and introducing the main method
we use in this work to solve the optimal transport dictionary learning problem.
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Notations

We denote matrices in uppercase, vectors in bold lowercase and scalars in lower-case.
If M is a matrix, M> denotes its transpose, mi its ith column and m:j its jth row. 1n
denotes the all-ones vector in Rn; when the dimension can be deduced from context
we simply write 1. For two matrices A and B of the same size, we denote their inner
product 〈A,B〉 := tr

(
A>B

)
, and their element-wise product (resp. quotient) as A�B

(resp. A
B

). Σn is the set of n-dimensional histograms: Σn :=
{
q ∈ Rn

+ | 〈q,1〉 = 1
}

. If
A is a matrix, A+ is its Moore-Penrose pseudo-inverse. Exponentials and logarithms
are applied element-wise to matrices and vectors.
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CHAPTER 1. INTRODUCTION

1.1 Optimal Transport

Optimal transport can be seen as a generalization of optimal assignment between
two sets of points. We start by formalizing the definition of optimal transport from
this optimal assignment point of view. We then discuss a few properties of optimal
transport and equivalent problems or formulations.

1.1.1 Optimal Assignment

Optimal assignment is the problem, given two sets of points of same size, of finding
a coupling (a.k.a. assignment) between these sets which minimizes the total distance
between points and their counterpart in the coupling.

Formally, we are given finite two sets of n points A = {ai ∈ Ω|1 ≤ i ≤ n},B =
{bi ∈ Ω|1 ≤ i ≤ n} in a space Ω and a cost of assigning points one to another in the
form of a real valued, non-negative bi-function d on Ω. The goal is to find a bijective
mapping from A to B which solves

min
f

n∑
i=1

d(ai, f(ai)). (1.1)

Figure 1.2 shows an example of optimal and non-optimal assignment between two
clouds of points. If (Ω, d) is a Euclidean space, the cost of an assignment in the Figure
is the cumulative length of the arrows. The segments defined by each coupling cannot
cross each other in an optimal assignment, otherwise switching two such couplings
would reduce the total distance.

(a) Sets A and B (b) Non-optimal assign-
ment

(c) Optimal assignment

Figure 1.2: Optimal assignment between two sets of points.

Optimal assignments always exist, since they are the solution of an optimization
over a non-empty finite set, however they are not necessarily unique. Indeed in the
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1.1. OPTIMAL TRANSPORT

complex plane let A = {1, eiπ} and B = {eiπ2 , ei 3π2 }. The four points are extremities
of a square, grouped along diagonals. There are two assignments, and both have the
same cost: 2

√
2.

We can rewrite Problem 1.1 as an integer program. Since f is a bijection between
two finite sets of same size, we can represent it as a permutation matrix M , that is
an n × n non-negative integer matrix which is all zeros except for exactly one entry
per row and column whose value is one. The problem can then be rewritten:

min
M∈Nn×n+
M1=1
M>1=1

n∑
i,j=1

Mi,jd(ai, bj). (1.2)

Denoting D the matrix of distances between A and B, that is Di,j = d(ai, bj), we
can further rewrite the problem as follows:

min
M∈Nn×n+
M1=1
M>1=1

n∑
i,j=1

Mi,jDi,j = min
M∈Nn×n+
M1=1
M>1=1

〈M,D〉 . (1.3)

Although there is no known algorithm to solve integer programming in poly-
nomial time in general, optimal assignment can be solved by specific algorithms
such as the Hungarian algorithm, which with our notations solves the problem in
O(n3)[Tomizawa, 1971].

1.1.2 Exact Optimal Transport

1.1.2.1 Definition

Optimal transport is the generalization of optimal assignment where both sets of
points do not have the same cardinal, and where each point has a non-negative weight.
The goal is now to assign the weight of points of one set to the weight of points in
an optimal way. Figure 1.3 shows example of optimal and non-optimal transport
assignments, where the cost of an assignment can be thought of as the sum of the
length of the arrows times their width.

We now have two weighted clouds of points A = {(xi ∈ R+,a
i ∈ Ω)|1 ≤ i ≤ m}

and B = {(yi ∈ R+, b
i ∈ Ω)|1 ≤ i ≤ n}. Since we want to assign the weights

in A to the weight in B, we need the total weight in each cloud to be the same:∑m
i=1 xi =

∑n
i=1 yi, which can be rewritten more concisely as ‖x‖1 = ‖y‖1 since both

vectors are in the non-negative orthant. Similarly to Problem 1.3, we will represent
an assignment as a matrix T (for transportation matrix). Tij represent the amount of

5



CHAPTER 1. INTRODUCTION

(a) Weighted sets A and B. (b) Non-optimal transport (c) Optimal transport

Figure 1.3: Optimal transport between two weighted sets of point.

weight assigned from (xi,a
i) to (yj, b

j), we thus need to have T ∈ Rn×m
+ . For any j,∑n

i=1 Ti,j is the total amount of weight assigned to (yj, b
j), thus

∑n
i=1 Ti,j = yj. We

can rewrite this for all columns as T1 = y. Similarly T>1 = x. We denote U(x,y)
the set of transportation matrices from the weight vector x to the weight vector y:

U(x,y) :=

{
T ∈ Rn×m

+

∣∣∣∣∣T>1 = x

T1 = y.

}
(1.4)

As in the assignment problem, the cost of pairing to points is proportional to their
distance, but it is now also proportional to the weight assigned, and we aim at solving

min
T∈U(x,y)

n∑
i=1

m∑
j=1

Ti,jd(ai, bj). (1.5)

Rewriting this problem in matrix form, we get the following optimal transport
problem

min
T∈U(x,y)

〈T,D〉 . (1.6)

In the early formulation of optimal transport [Monge, 1781], A represented piles
of earth and B represented holes to be filled, hence the name earth mover’s distance
coined by Rubner et al. [1998]. However the mathematical problem itself is symmetric
and the arrows in Figure 1.3 could be directed either way.

Note:

In the case where all weights are integer, the optimal transport problem can be
cast into an optimal assignment problem. Indeed we can simply replace each weighted

6



1.1. OPTIMAL TRANSPORT

point by a number of points equal to its weight, at the same position. Furthermore, in
the case where all weights are rational numbers, we can again get back to an optimal
assignment problem by multiplying all weights by their least common denominator
in order to get integer weights. However there is almost no practical use to these
equivalences, since in most cases it would greatly increase the number of points in the
problem, and algorithms solving the optimal assignment problem are not faster than
those solving optimal transport.

In this work, the points of the clouds of points A and B are fixed and defined
by the application at hand in the form of the matrix D, but their weights x and y
may vary. For the remainder of this monograph we thus define the optimal transport
between vectors of weights as

OT(x,y) =

{
+∞ if U(x,y) = ∅

min
T∈U(x,y)

〈T,C〉 otherwise. (1.7)

Note that U(x,y) is a bounded convex polyhedron, so as long as it is not empty,
the optimal transport problem has a solution. As a result, if ‖x‖1 6= ‖y‖1, U(x,y) is
empty and OT(x,y) = ∞. On the other hand, if ‖x‖1 = ‖y‖1, xy

‖y‖21
∈ U(x,y) and

OT(x,y) is a real-valued number. As was the case for optimal assignment, a solution
of the optimal transport problem is not always unique.

1.1.2.2 Optimal Transport as a Minimum Cost Flow

The optimal transport problem can be seen as a minimum cost flow problem on a
bipartite graph. A bipartite graph is a graph where vertices are separated into two
sets, and there can be an edge between two nodes only if they are not in the same set.
Let V = {X1, . . . ,Xm,Y1, . . . ,Yn, } be a set of vertices, and E = {(Xi,Yj)|1 ≤ i ≤
m, 1 ≤ j ≤ n} be a set of edges. For 1 ≤ i ≤ m, 1 ≤ j ≤ n, we assign a flow source
value of xi to Xi, a flow sink value of yj to Yj and a cost Dij to the edge (Xi,Yj). Then
G = (V,E) is a bipartite graph, with n + m vertices and nm edges, and the optimal
transport between x and y can be found by minimizing the cost of the flow on this
graph. Figure 1.4 shows such a graph representing an optimal transport problem.

This representation of optimal transport as a minimum cost flow allows us to solve
it with specialized algorithms, for instance Orlin [1993] with O(n3 log n) complexity,
assuming n = m. The network simplex [Orlin et al., 1993], a specialized version of
the simplex, is another method of choice, which has been used in Rubner et al. [1998]
and is the algorithm used in the python package pot [Flamary and Courty, 2017].
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Figure 1.4: Representation of the optimal transport problem as a minimum cost flow
on a bipartite graph.

1.1.2.3 Properties

In this section we discuss properties of the optimal transport as a function of its
arguments x,y. In particular, since we are interested in minimizing objectives which
include the optimal transport, we will show that it is convex and see how to compute
its sub-gradients.

Dual Problem. Suppose that U(x,y) is non-empty. Let us consider the Lagrangian
of the optimal transport problem

L(T,u,v) = 〈T,D〉 −
〈
T>1− x,u

〉
− 〈T1− y,v〉

= 〈T,D〉 −
〈
T>,u1>

〉
+ 〈x,u〉+

〈
T,v1>

〉
+ 〈y,v〉

=
〈
T,D − 1u> − v1>

〉
+ 〈x,u〉+ 〈y,v〉 .

The Lagrange dual is then

max
u,v

min
T≥0
L(T,u,v) = max

u,v
min
T≥0

〈
T,D − 1u> − v1>

〉
+ 〈x,u〉+ 〈y,v〉 . (1.8)

Suppose that for some i, j, Dij − uj − vi < 0, then minT≥0 L(T,u,v) = −∞, we
thus have

8



1.1. OPTIMAL TRANSPORT

max
u,v

min
T≥0
L(T,u,v) = max

u,v
D−1u>−v1>≥0

〈x,u〉+ 〈y,v〉 . (1.9)

Let u and v be a pair of feasible solutions, i.e. such that D − 1u> − v1> ≥ 0,
for any real α, u + α1 and v − α1 is also a pair of feasible solutions, for which the
objective is 〈x,u〉+ 〈y,v〉+α(〈x,1〉− 〈y,1〉) = 〈x,u〉+ 〈y,v〉+α(‖x‖1−‖y‖1). As
a result if ‖x‖1 6= ‖y‖1, the dual problem is unbounded and its solution is infinite.

Since the optimal transport problem is a linear program with feasible solutions if
U(x,y) is non-empty, strong duality applies and

OT(x,y) = max
u,v

D−1u>−v1>≥0

〈x,u〉+ 〈y,v〉 . (1.10)

The maximization problem in Equation 1.10 is the dual of the optimal transport
problem. We can verify here that since the optimal transport problem is a linear
program, so is its dual. Note that if (u,v) is a feasible solution of the dual problem, so
is (u+γ1,v−γ1) for all γ ∈ R. The new objective is then 〈x,u〉+〈y,v〉+γ 〈1,x− y〉.
As a result if ‖x‖1 6= ‖y‖1, 〈1,x− y〉 6= 0 and the objective is unbounded. This is
consistent with our definition in Equation 1.7.

Convexity. With the dual form of the optimal transport problem, we can easily
prove that OT(x, ·) is convex for all x ≥ 0.

Let x ≥ 0, y(1) ≥ 0, y(2) ≥ 0 and 0 ≤ α ≤ 1, we will show that OT(x, αy(1) +
(1− α)y(2)) ≤ αOT(x,y(1)) + (1− α) OT(x,y(1)).

Let u(1) (resp. u(2)) and v(1) (resp. v(2)) be optimal solutions of the dual of the
optimal transport problem between x and y(1) (resp. y(2)). Since the constraint of
the dual problem are linear and do not depend on y(1) or y(2), αu(1) + (1−α)u(2) and
αv(1) + (1−α)v(2) are feasible solutions of the dual of the optimal transport problem
between x and αy(1) + (1− α)y(2). Thus

OT(x, αy(1) + (1− α)y(2)) ≤
〈
x, αu(1) + (1− α)u(2)

〉
+
〈
y, αv(1) + (1− α)v(2)

〉
≤ αOT(x,y(1)) + (1− α) OT(x,y(1))

OT(x, ·) is thus convex. Convexity of the optimal transport with respect to the
weights y is crucial to this work, since we are interested in minimizing an objective
which includes the optimal transport.

Convex Conjugate. The convex conjugate of a function is a useful tool to derive
duals for optimization problems. In this work we are interested in the convex conjugate
of the optimal transport distance with respect to its second variable, defined as follow:

OT∗(x, z) := max
y
〈z,y〉 −OT(x,y)

9
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.

The interest of using duals which involve the convex conjugate of optimal transport
is that it is easy to compute, and doesn’t require solving an optimization problem:

Theorem 1.1.1 (Convex conjugate). Let x ∈ Rm
+ , z ∈ Rn,

OT∗(x, z) =
m∑
i=0

xi max
j
Dij − zj

.

Proof. Let x ∈ Rm
+ , z ∈ Rn,

OT∗(x, z) = max
y
〈z,y〉 −OT(x,y)

= max
y
〈z,y〉 − min

T∈Rn×m+
T1=y
T>1=x

〈T,D〉

= max
y
〈z,y〉+ max

T∈Rn×m+
T1=y
T>1=x

−〈T,D〉

= max
y∈Rm+

T∈Rn×m+
T1=y
T>1=x

〈z,y〉 − 〈T,D〉

= max
T∈Rn×m+

T>1=x

〈z, T1〉 − 〈T,D〉

= max
T∈Rn×m+

T>1=x

〈
z1> −D,T

〉
.

The last line shows that the convex conjugate of optimal transport corresponds to
an optimal transport with cost matrix D− z1>, and with one constraint relaxed. As
such, for each column i, an optimizer T ? needs to assign maximum weight, i.e. xi, to
argmaxj(z1> −D)ij = argmaxj zj −Dij. We thus have

OT∗(x, z) = −
m∑
i=0

xi max
j
zj −Dij

.

Although the value of OT∗(x, ·) is relatively easy to compute compared to OT(x, ·),
neither function is differentiable and we are restricted to sub-gradient methods for
solving optimization problems which involve these functions.
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Optimal Transport Defines a Distance. So far, even though we have talked
about the optimal transport distance, we have not described under which conditions
optimal transport defines a distance between weighted clouds of points.

When n = m and the cost matrix D is the p-th power (p > 1) of a distance
matrix, i.e. di,j = `(yi,yj)

p for some (yi) in a metric space (Ω, `), then OT(·, ·)1/p is
a distance on the set of vectors in Rn

+ [Villani, 2003, Theorem 7.3]. This distance is
sometimes called the Wasserstein distance of order p.

In this work, the fact that optimal transport is a distance or not is not of practical
importance: dictionary learning and NMF are often used with the KL divergence or
the Itakura-Saito (IS) divergence. Indeed, neither in our topic modeling experiment
of Chapter 2 nor in our BSS experiments of Chapter 3 does the cost matrix satisfy
the conditions we just described.

1.1.2.4 Examples

Distance Between Bags-of-features. The optimal transport distance can be used
to get a distance on bag-of-features representations of data. A simple example of that
is text data. We can represent a text as the set of the words it contains, and give to
each word the weight corresponding to its frequency in the text. This representation
is lossy, as one usually cannot reconstruct a text given only the frequency of each of
its words, but it is a common way to process texts[Berry et al., 1995, Lee and Seung,
2001]. If we can get a distance between words then we can compute an optimal
transport between texts. Kusner et al. [2015] used words embeddings [Mikolov et al.,
2013] to map words to a Euclidean space and use its distance as the matrix D. Using
optimal transport as a distance between texts, which they call the word mover’s
distance, they showed improved k-nearest neighbor classification results over other
distances. Figure 1.5 illustrates the idea of mapping words to a Euclidean space and
using optimal transport, on two simple sentences.

We use this idea in Chapter 2 to perform topic modeling, and we further propose
to use bilingual word embeddings to get a distance between text in different languages,
and perform cross-language topic modeling.

Distance Between images. Optimal transport can also be used to compute dis-
tances between either grayscale or color images for which we treat each color compo-
nent independently. In any case, x is a vector representing intensity levels for each
pixel of an n × m image, i.e. xi is the intensity of the pixel located at coordinates
C(i) := (bi/mc, i%m) in the image, where b·c is the integer part and % is the remain-
der operator. We use as the cost matrix C the matrix of pairwise squared Euclidean
distances between the locations of the pixels, that is cij = ‖C(i) − C(j)‖2

2. Among
other applications, the optimal transport distance between images obtained with this
definition of C has been used for computing optimal transport barycenters [Cuturi
and Doucet, 2014, Solomon et al., 2015] and Wasserstein principal component analy-
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Figure 1.5: Word mover’s distance: each word in both sentences are mapped to a point
in a Euclidean space, except for stop-words. Optimal transport then allows to compute
a distance between both sentences.

sis [Seguy and Cuturi, 2015, Cazelles et al., 2018]. In this work, we use this definition
of the optimal transport distance between images in Chapter 4, in order to perform
image denoising among others, and in Chapter 2 where we apply our dictionary learn-
ing method as a preprocessing step for face recognition.

1.1.3 Entropy Regularized Optimal Transport

We propose to use an entropy regularized version of optimal transport to solve opti-
mization problems involving OT(x, ·). The advantage of using this regularized optimal
transport is twofold. First, similarly to Cuturi and Peyré [2016], Rolet et al. [2016],
we take advantage of its smooth convex conjugate to derive dual problems that can be
solved efficiently. Additionally, it lets us use further accelerations due to the special
form of the cost matrix C in the case of optimal transport between images.

1.1.3.1 Definition

The entropy regularized optimal transport was proposed by Cuturi [2013] as a fast
approximation of optimal transport. For x,y ∈ Rn

+, γ > 0, we define the entropy
regularized optimal transport between x and y as:

OTγ(x,y) =

{
+∞ if U(x,y) = ∅

min
T∈U(x,y)

〈T,C〉 − γE(T ) otherwise, (1.11)

where E(T ) := −〈T, log(T )〉 is the entropy of T .
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In recent years, entropy-regularized optimal transport has gained popularity as a
proxy for optimal transport as a loss in optimization problems [Gramfort et al., 2015,
Frogner et al., 2015, Seguy et al., 2018] due to both its simplicity and good properties
with respect to convex optimization. Indeed, contrary to exact optimal transport,
the entropy regularized version is differentiable everywhere, and the simple form of
its convex conjugate allows to derive tractable duals for many optimization problems
involving OTγ.

Other regularizations of the optimal transport problem have been proposed [Blon-
del et al., 2018, Seguy et al., 2018], leading to different properties on the optimal
transport plan T . All of the methods presented in this work would also be applicable
to the Euclidean norm as a regularizer for example, but we only consider the entropy
regularization in this work since we are not actually interested in transport plans, and
the entropy regularization benefits from accelerations which make it the only tractable
one in the case of transport between images.

1.1.3.2 Properties

Similarly to the non-regularized case, OTγ is convex with respect to either its variable.
One advantage over the exact optimal transport though is that it is differentiable, and
so is its convex conjugate.

Dual Problem. The dual problem of regularized optimal transport with a convex
regularizer is studied in details in Blondel et al. [2018]. We show here how to derive
it for the entropy regularization. Suppose that U(x,y) is non-empty. Let us consider
the Lagrangian of the regularized optimal transport problem

L(T,u,v) = 〈T,D〉 −
〈
T>1− x,u

〉
− 〈T1− y,v〉 − γE(T )

= 〈T,D〉 −
〈
T>,u1>

〉
+ 〈x,u〉+

〈
T,v1>

〉
+ 〈y,v〉+ γ 〈T, log T 〉

=
〈
T,D − 1u> − v1> + γ log T

〉
+ 〈x,u〉+ 〈y,v〉 .

The Lagrange dual is then

max
u,v

min
T≥0
L(T,u,v) = max

u,v
min
T≥0

〈
T,D − 1u> − v1> + γ log T

〉
+ 〈x,u〉+ 〈y,v〉 .

Let us solve the inner minimization problem. We want to minimize a strictly
convex function over an open convex set, thus the optimizer T ? is unique and the first
order conditions tell us:
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D − 1u> − v1> + γ(log T ? + 11>) = 0

log T ? =
1u> + v1> −D − γ11>

γ

T ? = e
1u>+v1>−D−γ11>

γ

Plugging the value of T ? in the dual we get

max
u,v
L(T ?,u,v) = max

u,v

〈
e

1u>+v1>−D−γ11>
γ , D − 1u> − v1> + 1u> + v1> −D − γ11>

〉
+ 〈x,u〉+ 〈y,v〉

= max
u,v
〈x,u〉+ 〈y,v〉 − γ

〈
e

1u>+v1>−D−γ11>
γ ,11>

〉

Note how the dual of the regularization problem replaced a hard constraint on
1u> + v1> − D by a form of regularization on it. Similarly to the non-regularized
case, if ‖x‖1 6= ‖y‖1 the solution of the dual problem is +∞. If a finite solution exists
however, the maximizer is unique because the objective is strictly concave.

Since the regularized optimal transport problem is a feasible convex optimization
problem with linear constraints, strong duality applies and

OTγ(x,y) = max
u,v
〈x,u〉+ 〈y,v〉 − γ

〈
e

1u>+v1>−D−γ11>
γ ,11>

〉
. (1.12)

Convexity. Convexity is derived in the exact same way as in the non-regularized
case. Re-using the same notations we have

OTγ(x, αy
(1) + (1− α)y(2)) ≤

〈
x, αu(1) + (1− α)u(2)

〉
+
〈
y, αv(1) + (1− α)v(2)

〉
−

γ

〈
e

1(αu(1)+(1−α)u(2))>+(αv(1)+(1−α)v(2))1>−D−γ11>
γ ,11>

〉
<
〈
x, αu(1) + (1− α)u(2)

〉
+
〈
y, αv(1) + (1− α)v(2)

〉
− γα

〈
e

1u(1)>+v(1)1>−D−γ11>
γ ,11>

〉
− (1− γ)α

〈
e

1u(2)>+v(2)1>−D−γ11>
γ ,11>

〉
because the exponential is a strictly convex function. Thus OTγ(x, αy

(1) + (1 −
α)y(2)) < αOTγ(x,y

(1)) + (1− α) OTγ(x,y
(1)) and OTγ(x, ·) is strictly convex.
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Convex conjugate. Similarly to the γ = 0 case, the entropy regularized optimal
transport has a simple convex conjugate. Indeed Cuturi and Peyré [2016] showed
that it can be expressed in closed form. Furthermore it is differentiable, its gradient
is γ-Lipschitz and can also be expressed in closed form:

OT?
γ(x, z) = γ (E(x) + 〈x, logKα〉) ,

∇y OT?
γ(x, z) = α�

(
K>

x

Kα

)
,

where K := e−D/γ and α := ez/γ.

Although we use a definition of optimal transport which differs slightly from Cuturi
and Peyré [2016], who consider normalized non-negative vectors, the formulas are the
same and proved in the same way.

Proof. Let x ∈ Rm
+ , z ∈ Rn,

OT∗γ(x, z) = max
y
〈z,y〉 −OTγ(x,y)

= −min
y
−〈z,y〉+ min

T∈Rn×m+
T1=y
T>1=x

〈T,D〉+ γ 〈T, log T 〉

= −min
y

min
T∈Rn×m+
T1=y
T>1=x

−〈z,y〉+ 〈T,D〉+ γ 〈T, log T 〉

= − min
y

T∈Rn×m+
T1=y
T>1=x

−〈z,y〉+ 〈T,D〉+ γ 〈T, log T 〉

= − min
T∈Rn×m+

T>1=x

−〈z, T1〉+ 〈T,D〉+ γ 〈T, log T 〉

= − min
T∈Rn×m+

T>1=x

〈
T,D − z1> + γ log T

〉
(1.13)

The last line is a (strictly) convex problem with non-empty linear constraint, so
strong duality applies and

OT∗γ(x, z) = −max
h

min
T∈Rn×m+

〈
D − z1> + γ log T, T

〉
−
〈
h, T>1− x

〉
= −max

h
min

T∈Rn×m+

〈
D − z1> + γ log T, T

〉
−
〈
h1>, T>

〉
+ 〈h,x〉

= −max
h

min
T∈Rn×m+

〈
D − z1> + γ log T − 1h>, T

〉
+ 〈h,x〉
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The first order condition for the inner minimization problem is:

D − z1> − 1h> + γ log T ? + γ11> = 0

⇔γ log T ? = 1h> + z1> −D − γ11>

⇔T ? = e
1h>+z1>−D−γ11>

γ

⇔T ? = e
z1>
γ � e−Dγ � e

1h>−γ11>
γ

⇔T ? = diag (α)K diag
(
e

h−γ1
γ

)
.

(1.14)

Because of strong duality, we know that T ? is also the optimizer of the primal
problem, thus T ?>1 = x, so

diag
(
e

h?−γ1
γ

)
K> diag (α) 1 = x

diag
(
e

h?−γ1
γ

)
K>α = x

e
h?−γ1
γ � (K>α) = x

e
h?−γ1
γ =

x

K>α

We thus have T ? = diag (α)K diag
(

x
K>α

)
. Plugging this value and Equation 1.14

into Equation 1.13, we get

OT∗γ(x, z) = −
〈

diag (α)K diag
( x

K>α

)
, D − z1> + γ(logα1> + logK + log(

x

K>α
)>1
〉

= −
〈

diag (α)K diag
( x

K>α

)
, γ log(

x

K>α
)>1
〉

= −
〈
α>K diag

( x

K>α

)
, γ log(

x

K>α
)>
〉

= −
〈
α>K diag

(
1

K>α

)
diag (x) , γ log(

x

K>α
)>
〉

= −
〈
x, γ log(

x

K>α
)
〉

= γ
〈
x, logK>α− logx

〉
= γ

〈
x, logK>α

〉
+ E(x)

The gradient is obtained by differentiation of this expression.

Rolet et al. [2016] make use of the simple form of this convex conjugate and its
gradient to derive fast algorithms for the optimal transport dictionary learning and
NMF problems. Section 4.2.1 showcases the computational gain of using dual methods
over primal ones on a simple regression problem.
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1.1. OPTIMAL TRANSPORT

The bottleneck in computing these formulas is the multiplication with matrix K.
Supposing we are working with square images of size m, then x is of size n = m2 and
the complexity of multiplying with matrix K is O(n2) = O(m4). Moreover storing
matrix K also has a space complexity of O(n2).

Accelerations. In the case where we are computing optimal transport between
images, or anytime the cost matrix D is a matrix of pairwise Euclidean distances on
a grid , multiplications with matrix K and K> are simply Gaussian convolutions of
standard deviation σ2 = γ [Solomon et al., 2015, ¶5.]. This allows us to compute OT?

γ

in O(n log n) instead of O(n2), and to not store the matrix K in memory. Figure 1.6
shows experimental times for multiplicating K with a vector, implementing this op-
eration as either a convolution or an actual matrix multiplication. For images of size
lower or equal to 16, the matrix multiplication may be faster. This can be useful for
example in dictionary learning or any other task in which images are divided into
small patches. In this thesis however, we will only consider full images, accordingly
we use the acceleration of Solomon et al. [2015] in all the timing results we report, if
applicable.

23 25 27 29
Image pixel width
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10−1

100

Co
m
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Matrix multiplication
Convolution acceleration

Figure 1.6: Computational time for multiplication with K for a square image with
respect to its width (log-scale)

Effect of using the entropy-regularized optimal transport. Since the entropy
regularized optimal transport is not a distance, given an input x, the point y which
minimizes OTγ(x,y) is not x:

Lemma 1.1.2 (Closest point). Let x ∈ Rn
+,

argmin
y∈Rn+

OTγ(x,y) =
K>x

K1

Proof. Let g := x 7→ 0, Fenchel duality tells us that

min
y

OTγ(x,y) + g(y) = max
h=0

OT∗γ(x,h)

= OT∗γ(x,0)
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The primal-dual relationship gives us

y? = ∇OT∗γ(x,0) = 1�
(
K>

x

K1

)
.

In the case where x is an image and C is the matrix of squared Euclidean distances
between pixel locations, this means that the closest point to any point with respect
to the regularized optimal transport is simply a Gaussian blur of standard deviation
σ2 = γ, rescaled to have the same total intensity as the original image. Based on this
observation, we set the regularization parameter γ of the entropy-regularized optimal
transport to 0.1 in all of our results of Section 4.3, so that the closest point would be
a blur of standard deviation 0.1 pixel, which is invisible to the naked eye.
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1.2. DICTIONARY LEARNING AND NMF

1.2 Dictionary Learning and NMF

1.2.1 Problem Formulation

In this thesis, we are interested in the problem of dictionary learning with an optimal
transport cost. Informally, dictionary learning aims at learning a representation of
a space as a few elements, which can be linearly combined to approximate data.
Consider a collection X = (x(1), . . . ,x(m)) of m vectors of dimension n. The goal of
dictionary learning is to find k elements D = (d(1), . . . ,d(k)) of the same dimension n
such that each x(i) can be reconstructed using D, i.e. there exists a matrix of mixture
weights λ = (λ(1), . . . ,λ(m)) such that X ' Dλ.

When all elements of X are non-negative, and if it is desirable that all elements
of D and λ are non-negative too, this problem becomes that of Non-negative Matrix
Factorization (NMF) [Paatero and Tapper, 1994]. Dictionary learning is usually solved
by casting it into the following optimization problem:

min
D∈Rn×k,λ∈Rk×m

m∑
i=1

`(x(i), Dλ(i)) +R1(D) +R2(λ), (1.15)

where ` is a divergence, whose role is to ensure that the data is closely reconstructed
by the dictionary D, and R is a regularizer, which enforces desired properties on D
and λ, e.g. non-negativity or sparsity.

Fast algorithm have been proposed for solving dictionary learning and NMF with
the Euclidean distance or the Kullback-Leibler divergence as the data fitting term
`[Lee and Seung, 2001]. Sparsity of the coefficients can be obtained by using a `1

regularization on λ. [Mairal et al., 2009] showed how to tackle this sparse dictionary
learning problem in an online setting, that is where λ is available by chunks, and ex-
hibited good performance on many image processing tasks, such as image in-painting
and denoising. While outside of the scope of this monograph, optimal transport sparse
dictionary learning is an interesting direction for future works. We currently only have
fast algorithms for learning sparse coefficients with optimal transport if the dictionary
is invertible (detailed in Chapter 4), however for sparse dictionary learning, we would
need to be able to learn dictionaries of any size, and especially overfull ones for which
our algorithms don’t apply.

NMF and dictionary learning methods in general have been used to tackle many
other machine learning and signal processing tasks, including (but not limited to)
topic modeling [Lee and Seung, 1999, Rolet et al., 2016], matrix completion [Zhang
et al., 2006], sound denoising [Schmidt et al., 2007], image denoising [Mairal et al.,
2009] and blind source separation[BSS; Sawada et al., 2013, Rolet et al., 2018].
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1.2.2 Algorithms

In the simplest form, where ` is the squared Euclidean norm and R1 = R2 = 0,
Problem 1.15 can be solved exactly. Indeed, finding the matrix X̂ of rank k which
is closest to X can be solved with singular value decomposition (SVD) and removing
all but the k largest singular values [Eckart-Young theorem; Eckart and Young, 1936].
Since X̂ is of rank k, it is easy to then factor it exactly into D and λ.

In the general case however, we do not have a formula for a solution, and usually
we do not even have algorithms which output a global optimum, because the problem
is not convex. If ` is a convex function of its second argument, and R1 and R2 are
convex functions, then the objective of Problem 1.15 is convex with respect to D and
λ separately. This means that when either D or λ is fixed, the objective is convex with
respect to the other variable. However the objective is not convex when both variable
vary at the same time. Many methods have been proposed to solve the problem in
that case and we will now proceed to explore some of them, in particular alternate
optimization which is the method we use for optimal transport dictionary learning.

1.2.2.1 Alternate Optimization

Many methods for solving dictionary learning and NMF problems, such as alternating
least square (ALS), rely on alternate minimization methods [Paatero and Tapper,
1994, Berry et al., 2007, Kim and Park, 2008], in which we start with an initial value
for D (or λ), and then iterate between solving the problem with D fixed and with λ
fixed, which can be summarized as follows:

λj+1 ∈ argmin
λ

m∑
i=1

`(x(i), Djλ(i)) +R2(λ)

Di+1 ∈ argmin
D

m∑
i=1

`(x(i), Dλj+1(i)
) +R1(D)

(1.16a)

(1.16b)

This simple scheme is based on the fact that usually, the problem is convex in D and
λ separately:

Theorem 1.2.1 (Convexity). Suppose that ` is a convex function of its second ar-
gument, and R1 and R2 are convex functions. Then the problems in Equation 1.16a
and Equation 1.16b are convex.

Proof. The proof is the same for both problems, so we only give it for Problem 1.16a.
We already know that R2 is convex. Let 1 ≤ i ≤ m, the function fi : `(xi, Dλi) is
convex as the composition of a convex function with a linear map. The objective of
the problem in Equation 1.16a is thus convex as a sum.
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Under mild assumptions, we can further guarantee that the sequence of objectives
produced by our alternate optimization method converges. First, let us define this
sequence u = (ui)i∈N as:

for j ∈ N,


u2j =

m∑
i=1

`(x(i), Djλj
(i)

) +R1(Dj) +R2(λj)

u2j+1 =
m∑
i=1

`(x(i), Djλj+1(i)
) +R1(Dj) +R2(λj+1)

The fact that u is decreasing can easily be proved by recursion. If moreover `, R1

and R2 are lower-bounded, u converges. In this work, we consider problems where all
these conditions are satisfied. In particular as shown in previous sections, OTγ with
γ ≥ 0 is convex of its second argument.

1.2.2.2 Other Methods

Lee and Seung [2001] also use a form of alternate method, with multiplicative updates
which reduce the objective but don’t solve sub-problems with D or λ fixed. Unfortu-
nately we do not have simple update formulas in the case of optimal transport and we
cannot use the same approach. Mairal et al. [2009] solves a sparse dictionary learning
problem with an alternate method, but in an online setting, i.e. where X is not given
in full, but its columns can be sampled and updates are computed on a batch. In
a similar way, Cao et al. [2016] solve dictionary learning with a stochastic alternate
method, where updates are computed on a subsets of the columns of X selected ran-
domly. These two methods could be used with the optimal transport distance as the
reconstruction error term, but are outside of the scope of this work.

1.2.3 Probabilistic Latent Semantic Indexing and NMF

Probabilistic latent semantic indexing (PLSI) is a popular method for topic model-
ing [Hofmann, 1999]. Given a dataset of text, the goal is to generate topics, i.e. group
words in terms of their meaning in order to analyze the dataset qualitatively. For ex-
ample, in a dataset of sports news article, we would except to have topics relating to
each sports, and maybe topics on tournaments or rules. In PLSA, topics are generated
in the form of probabilities on words, where words of high probability should share a
similar meaning or concept.

With PLSA, we consider texts as bags-of-words : we discard the order of the words
in a text, which can be represented as a count-vector of the words it contains. The
probabilistic model of PLSA is summarized in Figure 1.7. An event is the generation
of a word w in a text t, and we consider these two variables independent knowing the
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Figure 1.7: Generative model of PLSA.

hidden variable z (the topic). Generation events are independent, and if we assume
k topics the probability of assigning a word wi to a text tj is

p(wi, tj) =
k∑
q=1

p(zq)p(wi|zq)p(tj|zq).

Given a dataset X, where for 1 ≤ i ≤ m and 1 ≤ j ≤ n, xij is the number of time the
word wi appears in the text tj. The likelihood of X is

L(x) =
nm!∏

i=1...m
j=1...n

xij!

∏
i=1...m
j=1...n

p(wi, tj)
xij

Hofmann [1999] maximize the likelihood with an expectation-maximization (E-M)
approach. We will now show that maximizing L(x) is equivalent to solving the non-
regularized NMF problem with a Kullback-Leibler divergence as the loss. First, note
that in order to maximize L(x), we can drop the constant normalization factor, and
also maximize its logarithm. We are thus interested in solving

max
∑
i=1...m
j=1...n

xij log p(wi, tj) = max
∑
i=1...m
j=1...n

xij log

(
k∑
q=1

p(zq)p(wi|zq)p(tj|zq)
)

Let D ∈ Rm×k
+ and λ ∈ Rk×n

+ such that for any i, j and q, dij = p(wi|zq) and

λqj = p(tj|zq). Then (Dλ)ij =
∑k

q=1 p(zq)p(wi|zq)p(tj|zq), and maximizing L(x) is
thus equivalent to

max
Dλ

∑
i=1...m
j=1...n

xij log(Dλ)ij.

Up to a constant this is the same as

min
Dλ

∑
i=1...m
j=1...n

xij log
1

(Dλ)ij
+ xij log xij = min

Dλ

∑
j=1...n

KL (xj‖Dλj) .
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This shows that PLSA is equivalent to solving the non-regularized Kullback-Leibler
NMF. We can rephrase this as follows: minimizing the Kullback-Leibler divergence
between the empirical distribution X and the modeled distribution Dλ is equivalent
to maximizing the likelihood of the PLSA model.

1.2.4 Other Applications

In addition to topic modeling, NMF and dictionary learning can be used in a variety
of tasks and fields, including blind source separation, image processing or recommen-
dation systems.

Blind Source Separation. Given a sound signal which is known to be generated by
a mixture of sources (different voices for example), source separation aims at isolating
the signal produced by each source. A source separation method is blind if it only uses
sound data as an input, as opposed to using other information such as the position
of microphones relative to the source and to each other for example or the layout
of the room in which the sound is produced. NMF has been used to tackle BSS in
Schmidt and Olsson [2006] and Sun and Mysore [2013] among others. The idea is
to learn a dictionary for each source, concatenate the dictionaries and compute the
weights for the signal, and separate the dictionary again to isolate the sources. The
learning phase can be done on the signal to separate (unsupervised), or on isolated
data (supervised). For more details on NMF for BSS, see Chapter 3, which is dedicated
to defining a blind source separation method with optimal transport NMF and gives
a more detailed explanation of BSS in general and how to perform it with NMF.
We show that using optimal transport leads to good result on BSS both for sound
denoising and for separating mixtures of voices.

Image Processing. Dictionary learning and NMF have been applied to many
image processing tasks. Sandler and Lindenbaum [2009] for instance use NMF as a
pre-processing step for face recognition. They use the coefficient matrix λ as the input
for a classification algorithm, which can be thought of as dimensionality reduction.
We reproduce their experiment in Chapter 2. Mairal et al. [2009] use sparse dictionary
learning, Euclidean dictionary learning with an `1-norm regularization on λ, for image
denoising and in-painting. They cut images into overlapping small sized patches, in
the order of 9× 9 pixels, and learn an overfull dictionary. They then build a denoised
or in-painted image from the reconstructed patches. With this method, the dictionary
can be learned on a dataset or directly on the patches of the image to be processed.

Recommendation Systems. Given some appreciation rating of items for a user,
recommendation systems aim as suggesting other items to which the user might give
a high rating. Such systems might be found in online shops or streaming websites
for example: given a customer’s purchase or viewing history, such websites are quite
interested in suggesting the next item to purchase/view, thus retaining the customer.
Early systems based on k-nearest neighbors approaches were soon replaced with ma-
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trix factorization approaches [Koren et al., 2009]. In this case, the matrix X we want
to factorize is matrix of ratings, for which lines represent items and columns represent
users: xij is the rating given by user j to item i. Some (usually most) of the values
xij are unknown, making the problem a matrix completion problem. Such values are
simply removed from the objective, and many matrix factorization algorithms can
still be applied, including for example ALS and stochastic gradient descent.
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1.3 Contributions

Building on previous works on regularized optimal transport [Cuturi, 2013, Cuturi and
Peyré, 2016], we proposed in Rolet et al. [2016] to use entropy-regularized optimal
transport as the loss in dictionary learning and NMF problems. We derived dual
optimization problems for the sub-problems of dictionary learning with either D or λ
fixed. Using these dual problems, we were able to solve optimal transport NMF orders
of magnitude faster than their primal counter-parts, and than the previous method
of Sandler and Lindenbaum [2009]. The use of regularized optimal transport allows
us work with any data for which optimal transport can be computed, which was not
the case with the approximation of Shirdhonkar and Jacobs [2008]. This allowed us
to define “cross-domain” dictionary learning, for which we showed an application in
cross language topic modeling: we summarize a database of text in a chosen language
which can be different than the language of the summarized database.

In Rolet et al. [2018], we expanded our method and showed how to apply it to sound
processing. We showed that the using optimal transport NMF, we can learn universal
voice models which can better generalize to unheard voices than when learned with
other NMF methods. Based on this observation, we defined an optimal transport
Blind Source Separation (BSS) method and showed it outperformed other NMF-based
methods when applied to voice denoising. We also showcased how “cross-domain”
dictionary learning allows our models to be robust to a change in the data-acquisition
process between train and test time.

Finally in Rolet and Seguy [2021], we showed that when D is invertible, our duals
can be used to compute sparse optimal coefficients λ. In particular, we can compute
sparse decomposition on Fourier or wavelet bases, which allowed us to define optimal
transport wavelet shrinkage. We showed that using optimal transport to get a sparse
representations on these bases lead to reduced artifacts when processing image. We
further demonstrated the advantage of optimal transport shrinkage compared to other
shrinkage-based methods on an image denoising task, in particular in the presence of
non-gaussian noise.
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CHAPTER 2. OPTIMAL TRANSPORT DICTIONARY LEARNING AND
NON-NEGATIVE MATRIX FACTORIZATION

2.1 Chapter Introduction

Consider a collection X = (x1, . . . ,xm) of m vectors of dimension n. Learning a
dictionary for X can be stated informally as the goal of finding k dictionary elements
D = (d1, . . . ,dk) of the same dimension n such that each xi can be reconstructed
using such a dictionary, namely such that there exists a matrix of mixture weights
λ = (λ1, . . . ,λm) such that X ' Dλ.

When all elements of X are non-negative, and if it is desirable that all elements
of D and λ are non-negative too, this problem becomes that of Non-negative Matrix
Factorization (NMF) [Paatero and Tapper, 1994]. Lee and Seung [2001] proposed two
algorithms for NMF, with the aim of solving problems of the form:

min
D∈Rn×k+ ,λ∈Rk×m+

m∑
i=1

`(xi, Dλi) +R1(λ) +R2(D),

where ` is either the Kullback-Leibler divergence or the squared Euclidean distance
and R a regularizer. Dictionary learning and NMF have been used for various machine
learning and signal processing tasks, such as topic modeling [Hofmann, 1999, Lee and
Seung, 1999], matrix completion [Zhang et al., 2006] and sound denoising [Schmidt
et al., 2007].

Our goal in this chapter is to generalize these approaches using a regularized
optimal transport distance as the data fitting term `. Such distances can leverage
additional knowledge on the space of features using a metric between features called
the ground metric. Since the seminal work of Rubner et al. [1998], several hundred
papers have successfully used EMD in applications. Some recent works have for
instance illustrated its relevance for text classification [Kusner et al., 2015], image
segmentation [Rabin and Papadakis, 2015] and shape interpolation [Solomon et al.,
2015].

We motivate the idea of using an optimal transport fitting error with a toy example
described in Figure 2.1. In this example we try to learn dictionaries for histogram
representations of i.i.d. samples from mixtures of Gaussians. We consider n = 100
distributions ρ1, . . . , ρn, each of which is a mixture of three univariate Gaussians of
unit variance, with centers picked independently using N (−6, 2), N (0, 2) and N (6, 2)
respectively. The relative weights of these Gaussians are picked uniformly on [0, 1] and
subsequently normalized to sum to 1 for each distribution. We represent each data
sample as a normalized histogram xi of n = 100 bins regularly spaced on the segment
[−12, 12]. Here the features are points on the quantization grid, and the ground
metric is simply the Euclidean distance between these points. Optimal transport
NMF recovers components which are centered around −6, 0 and 6 and resemble
Gaussian pdfs. Because it is blind to the metric structure of R, KL NMF fail to
recover such intuitive components.
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x

x

x

x

OT NMF

Figure 2.1: Dictionaries learned on mixtures of three randomly shifted Gaussians.
Separable distances or divergences do not quantify this noise well because it is not
additive in the space of histograms. Top: examples of data histograms. Bottom:
dictionary learned with optimal transport (left) and Kullback-Leibler (right) NMF.

Related Work Sandler and Lindenbaum [2009] were the first to consider NMF
problems using an optimal transport loss. They noticed that minimizing optimal
transport fitting errors requires solving an extremely costly linear program at each
iteration of their block-coordinate iteration. Because of this, they settle instead for an
approximation of the optimal transport distance proposed by Shirdhonkar and Jacobs
[2008]. However this approximation can only be used when the features are in Rd, and
its complexity is exponential in d, making it impractical when d > 3. Moreover the
experimental approximation ratio for d = 2 in Shirdhonkar and Jacobs [2008] is rather
loose (1.5) even with the best hyper-parameters. Zen et al. [2014] also proposed a
semi-supervised method to learn D,λ and a ground metric parameter. Their approach
is to alternatively learn the ground metric as proposed previously in [Cuturi and Avis,
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2014] and perform NMF by solving two very high dimensional linear programs. They
apply their algorithm to histograms of small dimension (n ≤ 16).

Our Contribution The algorithms we propose to solve dictionary learning and
NMF problems with an optimal transport loss scale to problems with far more ob-
servations and dimensions than previously considered in the literature [Sandler and
Lindenbaum, 2009, Zen et al., 2014]. This is enabled by an entropic regularization
of optimal transport [Cuturi, 2013] which results in faster and more stable computa-
tions. We give in Section 2.2 a detailed presentation of our algorithms for optimal
transport (non-negative) matrix factorization of histogram matrices. In contrast to
previously considered approaches, our approach can be applied with any ground met-
ric. As with most dictionary learning problems, our objective is not convex but
biconvex in the dictionary D and weights λ and we use a block-coordinate descent
approach. We show that each of these sub-problems can be reduced to an opti-
mization problem involving the Legendre-Fenchel conjugate of the objective, building
upon recent work in Cuturi and Peyré [2016] that shows that the Legendre-Fenchel
conjugate of the entropy regularized optimal transport distance and its gradient can
be obtained in closed form. We show in Section 2.3 that these fast algorithms are
order of magnitudes faster than those proposed in Sandler and Lindenbaum [2009],
whose experiments we replicate. Finally, we show that the features used to describe
dictionary elements can be different from those present in the original histograms.
We showcase this property to carry out cross-language topic modeling: we learn top-
ics in French using databases of English texts. A Matlab implementation of our
methods and scripts to reproduce the experiment in the introduction are available at
http://arolet.github.io/wasserstein-dictionary-learning/.
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2.2 Optimal Transport Dictionary Learning

Let X ∈ (Σn)m be a matrix of m vectors in the n-dimensional simplex. Let k be a
number of dictionary elements, fixed in advance. We consider the problem

min
λ∈Rk×m,D∈Rs×k

m∑
i=1

OTγ(xi, Dλi) +R1(λ) +R2(D) (2.1)

Problem (2.1) is convex separately (but not jointly) in D and λ as long as R1 and
R2 are convex. We propose in what follows to use a block-coordinate descent on D
and λ.

Sandler and Lindenbaum [2009] show that when R = 0, γ = 0 and either D or λ
is fixed, Equation (2.1) is a linear program of dimensions m × n × s with m × (n ×
s + n + s) constraints, each involving 1, n or t × k variables. Representing these
constraints is challenging for common sized datasets, and solving such problems is
usually intractable. They proposed to replace the optimal transport distance by an
approximation [Shirdhonkar and Jacobs, 2008], for which the gradients are easier to
compute. However this approximation can only be used when M is a distance matrix
in a Euclidean space of small dimension. We propose instead to use the entropy
regularized optimal transport, with γ > 0. This allows us to consider any cost matrix
M , rather than only pairwise distance matrices, and makes the optimization problems
smooth and better behaved, in the sense that when D or λ are full rank, the optimizers
of each block update is unique. Moreover, we can adjust γ to get closer to zero in order
to refine our approximation of standard optimal transport. We propose next in §2.2.3
an entropic regularization on the dictionary D and weights λ to enforce positivity of
these coefficients.

Following the popular alternating least square method [ALS, Takane et al., 1977],
we consider a two-step procedure: since the objective is convex with respect to either
D or λ, we start by initiating D and then alternate between minimizing with respect to
λ and minimizing with respect to D. We start by giving simple dual problems for the
minimizing steps with D and λ, and follow by outlining our algorithms for dictionary
learning and NMF. We then discuss convergence and implementation considerations.

2.2.1 Weights Update

We consider here the case where the dictionary D is fixed, and our goal is to compute
mixture weights λ

argmin
λ∈Rk×m

m∑
i=1

OTγ(xi, Dλi) +R1(λ). (2.2)

31



CHAPTER 2. OPTIMAL TRANSPORT DICTIONARY LEARNING AND
NON-NEGATIVE MATRIX FACTORIZATION

2.2.1.1 Existence and Unicity

We showed in Rolet and Seguy [2021] that Problem 2.2 has simple sufficient conditions
for existence and unicity. In short, existence is almost always guaranteed except in
degenerate cases, and unicity depends on the properties of D and R1.

We start by giving simple existence and unicity conditions for the solutions of
Problem 2.2. We restrict ourselves to the case where X and λ have only one column,
i.e. are vectors, for simplicity. However the proofs are easily generalized to the matrix
case. Let

f : λ 7→ OTγ(x, Dλ).

We can get simple existence conditions for the solutions of Problem 4.1 based on
the domains of f and R, which we call domf and domR respectively.

Theorem 2.2.1. If D is full rank and Im(D)∩Rk
+ 6= {0}, then domf is compact and

non-empty.

Proof. Suppose that D is full-rank and Im(D)∩Rn
+ 6= {0}. Let a ∈ Im(D)∩Rn

+ such

that a 6= 0. Let λ ∈ Rk such that a = Dλ. Let b = ‖x‖1
‖a‖1λ, we have Db = ‖x‖1

‖a‖1a ≥ 0

and ‖Db‖1 = ‖x‖1 so b ∈ domf and domf is not empty.

Let us now prove that domf is compact. domf =
{
λ|Dλ ≥ 0, 1>Dλ = 1>x

}
is

a polyhedron defined as an intersection of an hyperplane and closed half-spaces. It
is thus closed and as a subset of Rk, it is compact iif it is unbounded, which for a
polyhedron is equivalent to not containing any half line.

Let δ be a half-line, we will show that δ is not included in domf . There exist some
vectors a, b ∈ Rk with b 6= 0, such that δ = {a+ βb|β ≥ 0}.

Since D is full rank, Db 6= 0. Let 0 < i ≤ k such that (Db)i 6= 0. There are three
possible cases:

• a is not in domf , then δ is not included in domf .

• a ∈ domf and (Db)i > 0:

Since a ∈ domf , we now that (Da)i ≤ ‖x‖1. Let β = ‖x‖1−(Da)i+1
((Db)i)

, (D(a+ βb))i =

‖x‖1 + 1 > ‖x‖1, so a+ βb is not in domf and δ is not included in domf .

• a ∈ domf and (Db)i < 0:

Since a ∈ domf , we now that (Da)i ≥ 0. Let β = −(Da)i−1
((Db)i)

, (D(a+ βb))i =
−1 < 0, so a+ βb is not in domf and δ is not included in domf .

This shows that δ is not included in domf , As a closed polyhedron which contains no
half-line, domf is bounded and thus compact.
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Theorem 2.2.2 (Existence). Let R be a convex function. If domR ∩ domf is not
empty and compact, then Problem 4.1 has a solution.

Proof. The conditions directly imply that Problem 4.1 is a convex problem over a
non-empty compact set, so it has a solution.

In all the applications we considered, domR is either Rk×m or Rk×m
+ . A simple

condition for the existence of a solution is then D ≥ 0. In the non-constrained case, a
less restrictive condition would be that there exist λ ∈ Rk×m

+ such that Dλ ≥ 0 with
Dλ 6= 0. In Chapter 4, we solve the problem with an invertible dictionary D, optimal
coefficients are thus guaranteed to exist.

Unicity of a solution is follows from strict convexity of either f or R.

Theorem 2.2.3 (Unicity). Let R1 be a convex function, γ > 0. If D is full rank,
Problem 4.1 has at most one solution.

Proof. Suppose that D is full-rank, then it defines an injective linear map. Since
γ > 0, OTγ(x, ·) is strictly convex. f is then strictly convex, and since R1 is convex
the objective of Problem 4.1 is strictly convex. As a result it can have at most one
solution.

The previous result is only valid for the entropy-regularized optimal transport. We
can get unicity of a solution with exact transport by restricting R to strictly convex
functions:

Theorem 2.2.4 (Unicity II). Let R1 be strictly convex function, γ ≥ 0. Problem 4.1
has at most one solution.

Proof. OTγ(x, ·) is convex, so f is convex too and the objective of Problem 4.1 is
strictly convex. As a result it can have at most one solution.

In our applications of Chapter 4, D is invertible and γ > 0. Theorem 2.2.3 then
implies that Problem 2.2 has at most a solution. According to Theorem 2.2.1, domf

is compact and non-empty.

In the remainder of this work, we assume existence and unicity for the wording of
our results. However these results hold whether existence and unicity conditions are
actually satisfied or not.
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2.2.1.2 Duality

Problem 2.2 has some hidden constraints, indeed if xi 6= Dλi for any i, the objective is
infinite. As such, it could be solved using a proximal method such as FISTA [Beck and
Teboulle, 2009], but computing the gradient is equivalent to evaluating each Hxi(Dλi)
for i = 1, · · · ,m, that is solving m intermediate optimal transport problems. We show
in Section 4.2.4 that solving this problem in the dual can be hundreds if not thousands
of time faster that a direct primal approach.

We now proceed to prove the main result of this work, which is that Problem 2.2
has a simple dual that can be solved efficiently.

Theorem 2.2.5 (Dual for the Coefficients Step). The solution λ? of Problem 2.2
satisfies the primal-dual relationship

Dλ? =
(
∇OT∗γ(xi,h

?
i)
)m
i=1

(2.3)

where H? is the solution of the dual problem

min
H∈Rn×m

m∑
i=1

OT∗γ(xi,hi) +R∗1(−D>H). (2.4)

The advantage of working with Problem 2.4 is that the objective doesn’t include
OTγ but replaces it with OT∗γ, whose value and gradient can be computed efficiently
using the formulae of Section 1.1.3.

Proof. We rewrite Problem (4.1) by introducing the variable Q = Dλ:

min
λ∈Rk×m
Q∈Rn×m+
Dλ=P

m∑
i=1

OTγ(xi, qi) +R1(λ).

It is a convex problem with linear constraints so strong duality holds, the dual
problem being:

argmax
H∈Rn×m

min
λ∈Rk×m
Q∈Rn×m+

m∑
i=1

OTγ(xi, qi)− 〈H,Q−Dλ〉+R(λ)

= argmax
H∈Rn×m

min
λ∈Rk×m
Q∈Rn×m+

m∑
i=1

OTγ(xi, qi)− 〈hi, qi〉+ 〈H,Dλ〉+R(λ)

34



2.2. OPTIMAL TRANSPORT DICTIONARY LEARNING

By definition of OT∗γ, we get

argmax
H∈Rn×m

min
λ∈Rk×m

−
m∑
i=1

OT∗γ(xi,hi) + 〈H,Dλ〉+R(λ)

= argmin
H∈Rn×m

max
λ∈Rk×m

m∑
i=1

OT∗γ(xi,hi) +
〈
−D>H, λ

〉
−R(λ)

= argmin
H∈Rn×m

m∑
i=1

OT∗γ(xi,hi) + max
λ∈Rk×m

〈
−D>H,λ

〉
−R(λ)

(2.5)

(2.6)

(2.7)

Noting that the right side is the convex conjugate of R, we get the dual problem:

argmin
H∈Rn×m

m∑
i=1

OT∗γ(xi,hi) +R∗(−D>H).

Problem (4.3) is simply the Fenchel dual of the original problem, the primal-dual
relationship in Equation (2.3) can be recovered from the first order conditions of
Problem 2.5 with respect to variable h.

If R∗ is smooth and its gradient can be computed efficiently, we can solve Prob-
lem (4.3) with an accelerated gradient method [Nesterov, 1983]. Once the optimizer
H? of the dual is found, we compute λ? by solving the primal-dual relationship, i.e.
Equation (2.3). This equation is simply a system of linear equations, and duality
guaranties that it does have a solution.

2.2.2 Dictionary Update

Assuming weights λ are fixed, our goal is now to learn the dictionary matrix D by
solving

min
D∈Rs×k

m∑
i=1

OTγ(xi, Dλi) +R2(D). (2.8)

2.2.2.1 Existence and Unicity

As for the coefficient case, existence of a dictionary for which the objective is finite
is not guaranteed. Indeed, the optimal transport term is finite only if Dλ > 0 and
1>X = 1>Dλ. In the limit case where k = 1, this reduces to λ ∝ 1>X. However, if
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λ ≥ 0 and 1>λ = 1>X, then any non-negative D with D>1 = 1 is feasible, and the
problem has an infinite number of solutions. In general however, existence conditions
tend to be more complicated that for the coefficients case, because the problem is not
separable anymore with respect to the columns of X or λ.

For this reason, we always initialize our alternate optimization with D ≥ 0 and
optimize over λ first. This way, at each iteration, the current dictionary is feasible
and there is at least one solution.

We can get unicity however, with similar conditions as for the weight update:

Theorem 2.2.6 (Unicity). Let R2 be a convex function, γ > 0. If λ is full rank,
Problem 2.8 has at most one solution.

Theorem 2.2.7 (Unicity II). Let R2 be strictly convex function, γ ≥ 0. Problem 2.8
has at most one solution.

We leave out the proofs, since they are the same as for Theorems 2.2.3 and 2.2.4.

2.2.2.2 Duality

Computing an optimal dictionary for a given weight matrix can be done through a
dual problem, in a similar fashion as for the weight learning step:

Theorem 2.2.8 (Dual for the Dictionary Step). Let D? be a solution of Problem 2.8.
D? satisfies the primal-dual relationship

D?λ =
(
∇OT∗γ xi(g

?
i)
)m
i=1

, (2.9)

where H? is the solution of the dual problem

min
H∈Rs×m

m∑
i=1

OT∗γ(xi,hi) +R∗2(−Hλ>i ). (2.10)

Proof. Let us introduce the variable Q = Dλ. Problem (2.8) becomes

min
D∈Rs×k,Q∈Rs×m

m∑
i=1

OTγ(xi, qi) +R2(D), s.t. Q = Dλ.

This is a convex optimization problem with linear constraints, thus strong La-
grange duality holds, with the following dual:

max
H∈Rs×m

min
D∈Rs×k,Q∈Rs×m

m∑
i=1

OTγ(xi, qi) +R2(D) + 〈H,Dλ−Q〉 .
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We can rewrite this problem to simplify it using OT∗γ:

argmax
H∈Rs×m

min
D∈Rs×k

〈H,Dλ〉+R2(D) + min
Q∈Rs×m

m∑
i=1

OTγ(xi, qi)− 〈H,Q〉

= argmax
H∈Rs×m

min
D∈Rs×k

〈H,Dλ〉+R2(D) +
m∑
i=1

min
q∈Rs×m

OTγ(xi, q)− 〈hi, q〉

= argmax
H∈Rs×m

min
D∈Rs×k

〈H,Dλ〉+R2(D)−
m∑
i=1

OT∗γ(xi,hi)

= argmax
H∈Rs×m

min
D∈Rs×k

〈
Hλ>, D

〉
+R2(D)−

m∑
i=1

OT∗γ(xi,hi)

= argmax
H∈Rs×m

min
D∈Rs×k

−
〈
−Hλ>, D

〉
+R2(D)−

m∑
i=1

OT∗γ(xi,hi)

= argmax
H∈Rs×m

−R∗2(−Hλ>)−
m∑
i=1

OT∗γ(xi,hi)

(2.11)

(2.12)

Problem 2.12 is equivalent to Problem 2.10. The primal-dual relationship is derived
from the first-order conditions of Problem 2.11.

Note that here, Problem 2.10 is not separable, this is normal since changing one
dictionary element affects all reconstructions.

2.2.3 Algorithms

Both our dictionary learning algorithm and our NMF algorithm rely on alternately
solving Problem 2.2 and Problem 2.8. In order to simplify the outline of our algorithm,
for any regularizer function f we define:

DL1,f (D) = argmin
λ∈Rk×m

m∑
i=1

OTγ(xi, Dλi) + f(λ)

DL2,f (λ) = argmin
D∈Rs×k

m∑
i=1

OTγ(xi, Dλi) + f(D).

We compute DL1,f and DL2,f using FISTA [Beck and Teboulle, 2009].
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Dictionary Learning Solving either the weight update or the dictionary update
without regularization introduces a constraint in the dual problem. Indeed, let f be the

constant 0-valued function of a matrix. For any matrix M , f ∗(M) =

{
0 if M = 0

∞ otherwise

As a result, when R1 = f = 0, Equation 2.4 becomes

min
H∈Rs×m
D>hi=0

m∑
i=1

OT∗γ(xi,hi). (2.13)

Conversely, when R2 = f = 0, Equation 2.10 becomes

min
H∈Rs×m
Hλ>=0

m∑
i=1

OT∗γ(xi,hi). (2.14)

Both weight and dictionary updates can be solved with FISTA, where the proximal
step is simply a projection on the constraint.

Since the value of the objective of un-regularized dictionary learning depends on D
and λ only through their product, multiplying a column of D by a value, and dividing
the corresponding row of λ by the same value yields the same objective. As a result,
iterates of D and λ could very easily grow infinitely big or small.

In order to those iterate from blowing up, we will require each column of D to
have a unit `1-norm. This is easily done after each dictionary update: let a = |D|>1,
before going to the next iteration, we perform D ← D diag (a) and λ ← diag

(
1
a

)
λ.

As noted earlier, this doesn’t affect the objective value. We summarize the overall
procedure in Algorithm 1.

Algorithm 1: Optimal Transport Dictionary Learning

Data: Input dataset X ∈ Rn×m, dictionary size k
Result: Factorization matrices D and λ

begin
Initialization: set D ∈ Rs×m

+ randomly, with normalized columns
while not converged do

λ← DL1,0(D)
D ← DL2,0(λ)
D ← D diag

(
|d|>1

)
end

λ← diag
(

1
|d|>1

)
λ

end
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Optimal Transport NMF In order to enforce non-negativity constraints on the
variables, we consider the problem

min
λ∈Rk×m+

D∈Rs×k+

D>1=1

m∑
i=1

Hxi(Dλi)− ρ1E(λ)− ρ2E(D), (2.15)

We can solve each sub-problem with either D or λ fixed using Theorem 2.2.5 and
Theorem 2.2.8, with

R1(λ) =ρ1E(λ)

R2(D) =

{
ρ2E(D) if D>1 = 1

∞ otherwise.

(2.16)

(2.17)

The conjugate and gradient of R1 are:

R∗1(H) = ρ1

〈
11>, e

H−ρ1
ρ1

〉
∇R∗1(H) = e

H−ρ1
ρ1 .

Proof. Let H ∈ Rk×m,

R∗1(H) = max
λ∈Rk×m+

〈H,λ〉 − ρ1E(λ).

The right-hand optimization problem is a concave problem, for which the first
order conditions read

H − ρ1(log(λ)− 1) = 0

⇔λ = e
H−ρ1
ρ1 .

Injecting λ in the objective function yields

R∗1(H) =
〈
H, e

H−ρ1
ρ1

〉
− ρ1

〈
e
H−ρ1
ρ1 , log

(
e
H−ρ1
ρ1

)〉
=
〈
H, e

H−ρ1
ρ1

〉
−
〈
e
H−ρ1
ρ1 , H − ρ1

〉
=
〈
e
H−ρ1
ρ1 ,11>

〉
.

The gradient is trivially obtained from the expression of R∗1.
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The conjugate and gradient of R2 are:

R∗2(H) = ρ2

〈
1, log(e

H>
ρ2 1)

〉
∇R∗2(H) =

e
H
ρ2

11>e
H
ρ2

.

Proof. Let H ∈ Rs×k,

R∗2(H) = max
D∈Rs×k+

D>1=1

〈H,D〉 − ρ2E(D) (2.18)

Let f : D 7→ 〈H,D〉 − ρ2E(D) be the objective function of the optimization
problem in Equation 2.18, and domf =

{
D ∈ Rs×k

+ |D>1 = 1
}

be the domain of the
same optimization problem. Suppose we can find a matrix D in the interior of domf ,
for which ∇f(D) ⊥ domf , since f is concave, D would maximize f over domf . Let
us look for such a D.

The condition ∇f(D) ⊥ domf means that ∇f(D) is constant column-wise, i.e.
∇f(D) = 1a> for some a ∈ Rk. We have

∇f(D) =H − ρ2 − ρ2 log(D)

=1a>.

This means that

log(D) =
H − ρ2 − 1a>

ρ2

⇔ D =e
H−ρ2−1a>

ρ2 .

We know that D>1 = 1, so
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e
H>−ρ2−a1>

ρ2 1 = 1

⇔
(
e
−a1>
ρ2 � e

H>−ρ2
ρ2

)
1 = 1

⇔ e
−a
ρ2 �

(
e
H>−ρ2
ρ2 1

)
= 1

⇔ −a
ρ2

+ log

(
e
H>−ρ2
ρ2 1

)
= 0

⇔ a = ρ2 log

(
e
H>−ρ2
ρ2 1

)
.

Substituting the value of a inD, we getD = e
H−ρ2
ρ2

11>e
H−ρ2
ρ2

= eH/ρ2

11>eH/ρ2
= eH/ρ2 diag

(
1

1>eH/ρ2

)
.

Note that D>1 = diag
(

1
1>eH/ρ2

)
eH
>/ρ21 = 1, thus D ∈ domf . Moreover D > 0, so D

is in the interior of domf . Since ∇f(D) ⊥ domf , D is the solution of the optimization
problem in Equation 2.18.

We thus have

R∗2(H) =f(D)

=

〈
H,

eH/ρ2

11>eH/ρ2

〉
− ρ2

〈
eH/ρ2

11>eH/ρ2
, log

(
eH/ρ2

11>eH/ρ2

)〉
=

〈
H,

eH/ρ2

11>eH/ρ2

〉
− ρ2

〈
eH/ρ2

11>eH/ρ2
, log(eH/ρ2)− log(11>eH/ρ2)

〉
=ρ2

〈
eH/ρ2

11>eH/ρ2
, log(11>eH/ρ2)

〉
.

In order to simplify this expression further, let us write the dot-product as a sum:

R∗2(H) =ρ2

s∑
i=1

k∑
j=1

eHij/ρ2∑k
p=1 e

Hip/ρ2
log(

k∑
p=1

eHip/ρ2)

=ρ2

s∑
i=1

log(
k∑
p=1

eHip/ρ2)

=ρ2

〈
1, log(eH

>/ρ21)
〉

The gradient is obtained through differentiation of the developed expression. For
any i, j,

∇R∗2(H)ij =
eHij/ρ2

log(
∑k

p=1 e
Hip/ρ2)
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We can solve each dual sub-problem with fista, which in this case amounts to an
accelerated gradient [Nesterov, 1983] since the whole objective is differentiable and
there is no constraint.

Algorithm 2: Optimal Transport NMF

Data: Input dataset X ∈ Rn×m, dictionary size k, ρ1 and ρ2

Result: Factorization matrices D and λ

begin
Initialization: set D ∈ Rs×m

+ randomly, with normalized columns
while not converged do

λ← DL1,R1(D)
D ← DL2,R2(λ)

end

end

2.2.4 Convergence

As pointed by Sandler and Lindenbaum [2009], the alternate optimization process
generates a sequence of lower bounded non-increasing values for the objective of
Problem (2.1), so the sequence of objectives converges. When, moreover, we use
an entropic regularization (ρ1, ρ2 > 0, §2.2.3), successive updates for D and λ remain
in a compact space (see Lemma 2.2.9), and thus satisfy the conditions of [Tropp, 2003,
Theorem 3.1], taking into account that the hypothesis made in that theorem that the
divergence is definite is not actually used in the proof. Thus every accumulation point
of the sequences of iterates of D and λ is a generalized fixed point.

Moreover, if the iterates remain of full rank, then Theorem 3.2 in the same reference
applies, and the sequences either converge or have a continuum of accumulation points.
Although this full rank hypothesis is not guaranteed to hold, we observe that it holds
in practice when the entropic regularization term does not dominate the objective.

Lemma 2.2.9. All iterates of Algorithm 2 are inside of a compact.

Proof. All dictionary iterates are in
{
D ∈ Rs×k

+ |D>1 = 1
}

, which is a compact. Be-

cause of this restriction onD, iterates of λmust in turn be in
{
D ∈ Rk×m

+ |1>λ = 1topX
}

,
which is also a compact.
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2.2.5 Implementation

Projection Step for Unconstrained Dictionary Learning We solve Equa-
tions (2.4) and (2.10) with projected gradient descent methods. The orthogonal pro-
jector of the optimization problem is projKer(D>) := G 7→ G−DD+G in Equation (2.4)
and projKer(λ) := H 7→ H − Hλ+λ in Equation (2.10). Pre-computing DD+ (resp.
λ+λ) uses O(s2) (resp. O(m2)) memory space, and then the projection is performed
in complexity O(s2×m) (resp. O(s×m2)). When either s or m is large, storing such a
matrix is too expensive and leads to slowdowns due to memory management. In such
a case, we can pre-compute D+ (resp. λ+), which takes O(s × k) (resp. O(m × k))
memory space, and compute projKer(D>)(H) as H −D(D+H) (resp. projKer(λ)(H) as
H − (Hλ+)λ) in O(s2 ×m2 × k2) operations.

Parallelization of the Dictionary Update Parallelization on multiple processes
is easy for the weights updates because each weight vector λi can be computed in-
dependently. The dictionary updates however cannot be reduced to completely inde-
pendent sub-problems. Indeed the regularizer in Equation (2.10) makes a dependence
on the columns of D.

We show how to use parallel processes to speed-up the unconstrained dictionary
updates. The most computationally expensive part it to solve the optimization prob-
lem of Equation (2.10). The objective and gradient of this problem can be computed
independently for each column. Then we can gather the gradient on a single process
and project it. Since the constraint is linear we can directly project the gradient before
computing the step-size of the descent, so that if this computation involves computing
the objective (like a backtracking line-search does for example) the projection does
not need to be repeated.

We also propose a scheme to partially parallelize the positive dictionary updates.
The objective and gradient of the optimization problem in Equation (2.10) when R2

is the constrained entropy are found by computing e−Hλ
>

, which cannot be computed
separately on columns of H. An efficient way to still compute e−Hλ

>
in parallel

is to split H column-wise into (H(1), . . . , H(p)) where p is the number of processes

available, and compute e−H
(i)λ> on process i. The managing process computes e−Hλ

>

as
∏p

i=1 e
−H(i)λ> (here the product is point-wise) and gives the result to all the other

processes so that they can finish computing the gradient. By doing so most of the
work is done in parallel and each process only shares a matrix of size s × k twice
per gradient/objective calculation. Since usually k � m this allows to use all the
available processes while keeping communication overhead low.
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2.3 Experiments

2.3.1 Face Recognition

We reproduce here the face recognition experiment of Sandler and Lindenbaum [2009]
on the ORL dataset [Samaria and Harter, 1994] with the same preprocessing, classi-
fication and evaluation method in order to compare computation time. Each image
is down-sampled so that its longer side is 32. We represent images as column vectors
that we normalize so that they sum to 1 and store them in matrix X. The cost matrix
M is the Euclidean distance between pixels. For evaluation, the dataset is split evenly
in two, trained on one set and tested on the other several times, and we take the take
best classification performance obtained. Table 2.1 shows the classification accuracy
obtained with unconstrained optimal transport Dictionary Learning (Section 2.2.3).
The results are comparable to those of Sandler and Lindenbaum [2009].

k 10 20 30 40 50
γ = 1/30 93% 95.5% 97% 96.5% 96%
γ = 1/50 91% 95% 95% 97% 94.5%
Sandler09 94.5% 90.5% 95% 96.5% 97%

Table 2.1: Classification accuracy for the face recognition task on the ORL dataset.
Taken from Rolet et al. [2016]

Learning the dictionary and coefficients with a Matlab implementation of our
algorithm on an single core of a 2.4Ghz Intel Quad core i7 CPU with k = 40 takes
on average 20s for γ = 1/30 and 90s for γ = 1/50, while Sandler and Lindenbaum
[2009] report up to 20 minutes just for the D step with a comparable CPU. The
whole NMF can take up to 10 minutes when we use the entropy positivity barrier
with ρ1 = ρ2 = 1/10.

2.3.2 Topic Modeling

The goal of topic modeling is to extract a few representative histograms of words
(a.k.a. topics) from large corpora of texts. To tackle this task, Probabilistic Latent
Semantic Indexing (PLSI, Hofmann [1999]) learns a non-negative factorization of the
form X = DΣΛ, which models the document generation process: D is the matrix of
word probabilities knowing the topic, Σ is the diagonal matrix of topic probabilities
and Λ is the matrix of document probability knowing the topic. Ding et al. [2008]
shows that PLSI optimizes the same objective as the algorithm in Lee and Seung
[1999] for a Kullback-Leibler error term.

We use the same approach as Lee and Seung [1999] to learn topics from a database
of texts with NMF. The input data is a bag-of-words representation of the documents.
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Let Y = {y1, . . . , yn} be the vocabulary of the database, a text document is repre-
sented as vector of word frequencies: Xij is the frequency of the word yi in the jth text.
We get topics D by learning a factorization DΛ with NMF. The cost of the factoriza-
tion is usually its Euclidean distance or Kullback-Leibler divergence to X. In order
to use a optimal transport cost instead, we need a meaningful cost for transporting
words from one to another.

Recent works [Pennington et al., 2014, Zou et al., 2013], building upon earlier
references [Bengio et al., 2003], propose to compute Euclidean embeddings for words
such that the Euclidean or cosine distances between the respective image of two words
corresponds to some form of semantic discrepancy between these words. As recently
shown by Kusner et al. [2015], these embeddings can be used to compare texts using
the toolbox of optimal transport: Bag-of-words histograms can be compared with
optimal transport distances using the Euclidean metric between the words as the
ground metric M . We leverage these results to learn topics from a text database
using optimal transport NMF.

2.3.2.1 Datasets

We learned topics on two datasets labeled. Labels are ignored for performing NMF,
and are only used for evaluation. For each dataset, let m be the number of documents,
n the vocabulary size and c the number of labels. (i) BBCsport [Greene and Cun-
ningham, 2006] is a dataset of news articles about sports, labeled according to which
sport the article is about, in which we removed stop-words (n = 12, 669, m = 737,
c = 5). We split the dataset as a 80/20 training / testing set for classification. (ii)
Reuters is a dataset of news articles labeled according to their area of interest. We
used the version described in Cardoso-Cachopo [2007], with the same train-test split
for classification, and removed stop-words and words that appeared only once across
the corpus (n = 13, 038, m = 7, 674, c = 8).

2.3.2.2 Monolingual Topic Modeling

We used a pre-trained Glove word embedding [Pennington et al., 2014] to map words
to a Euclidean space of dimension 300. Let ~y1, . . . , ~ys be the embeddings of the words
in the dataset’s vocabulary, and ~z1, . . . , ~zs the embeddings of the words in the target
vocabulary, that is the words that are allowed to appear in the topics. We define the
cost matrix of the optimal transport distance as the cosine distance in the embedding:
mij = 1 − 〈~yi, ~zj〉

‖~yi‖‖~zj‖ . We then find D and λ with optimal transport NMF (OT-NMF,

Section 2.2.3).

Figure 2.2 shows a word cloud representation (wordle.net) for 4 relevant topics
for the dataset BBCsport. Depending on the parameters, the full optimal transport
NMF computation takes from 20 minutes to an hour for BBCsport and around 10
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Figure 2.2: Word clouds representing 4 of the 15 topics learned on BBCsport in
English. Top-left topic: competitions. Top-right: time. Bottom-left: soccer actions.
Bottom-right: drugs.

Taken from Rolet et al. [2016]

hours for Reuters using a Matlab implementation running on a single GPU of an
Nvidia Tesla K80 card.

Target Words Selection Since we can choose as target words any word that is
defined for the embedding, we need a way to select which to use. We chose to use a
list of 3, 000 frequent words in English1. Other approaches can be considered such as
using the dataset’s vocabulary, tokenized or not, or taking the most frequent words
for each class in the dataset.

2.3.2.3 Cross-language Topic Modeling

We proposed in Rolet et al. [2016] to leverage optimal transport to perform what
we call cross-domain learning tasks, which we illustrate here with bilingual topic
modeling. Our new task will be to get topics in a language that is not the language
of the dataset. This means that for each text xi, we compute a reconstruction Dλi
which is not in the same language. Because of this, we cannot compute a Euclidean

1Available at https://simple.wiktionary.org/wiki/Wiktionary:BNC_spoken_freq
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distance or KL divergence between xi and Dλi anymore. However, we are able to do
it with optimal transport thanks to bilingual word embeddings.

Our approach is to use the bilingual word embeddings proposed by Lauly et al.
[2014] that map words from two different languages to the same Euclidean space.
Using these, we are able to compute optimal transport between sentences in two
different languages. By setting the vocabulary of the topics as a subset of the words in
the target language, we can then learn topics in that language. Figure 2.3 illustrates
what we would expect with k = 1, which is the optimal transport iso-barycenter
problem. We use a pre-trained embeddings of dimension 40 from Lauly et al. [2014]
in order to learn topics in French. Note that this method could also learn topics in
one language from a bilingual dataset, or in both languages.

As in Section 2.3.2.2, we use the cosine distance in the embedding as the ground
metric. Table 2.4 shows word cloud representations for 4 relevant topics for the dataset
Reuters. Computation times are similar to those with a target vocabulary in English.

Figure 2.3: The optimal transport iso-barycenter of two English sentences with a target
vocabulary in French. Arrows represent the optimal transport plan from a text to the
barycenter. The barycenter is supported on the bold red words which are pointed by
arrows. The barycenter is not equidistant to the extreme points because the set of
possible features is discrete.

Taken from Rolet et al. [2016]

Target words selection We chose as the target dictionary a list of of 6, 000 frequent
words in French2.

2Available at http://wortschatz.uni-leipzig.de/Papers/top10000fr.txt
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Figure 2.4: Word clouds representing 4 of the 24 topics learned on Reuters in French.
Top-left topic: international trade. Top-right: oil and other resources. Bottom-left:
banking. Bottom-right: management and funding.

Taken from Rolet et al. [2016]

Method KL-NMF E-NMF OT-NMF OT-NMFf
Reuters 6.9% 8.2% 6.0% 9.8%
BBCsport 9.4% 12.8% 5.4% 20.8%

Table 2.2: Text classification error. OT-NMFf is the classifier using OT-NMF with
a French target vocabulary.

Taken from Rolet et al. [2016]

2.3.2.4 Classification Performance

We compared the classification error obtained on the two datasets with our method to
those obtained by using the mixture weights produced by Euclidean NMF (E-NMF)
and Kullback-Leibler NMF (KL-NMF). We use a k-NN classifier with a Hellinger
distance between the mixture weights. k is selected by 10-fold cross-validation on the
training set, using the same partitions for all methods. We set the number of topics
to 3c. Parameters γ, ρ1 and ρ2 were set to be as small as we could (small values can
make the gradients infinite because of machine precision) without a particular selection
procedure. See supplementary materials of Rolet et al. [2016] for a representation of
all the topics of every method.

Optimal transport NMF with a target vocabulary in English performs better on
this auxiliary task than Euclidean or KL NMF. Although this does not prove that
the topics are of better quality, it shows that optimal transport NMF can drastically
reduce the vocabulary size without losing discriminative power. As we can see in
Figures 2.2, 2.4, the topics themselves are semantically coherent and related to the
datasets’ content.
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English target vocabulary

a c f r t
a 21 0 0 0 0
c 0 25 0 0 0
f 0 0 50 4 1
r 0 0 3 26 0
t 0 0 0 0 19

French target vocabulary

a c f r t
a 18 0 1 0 2
c 0 22 3 0 2
f 3 0 44 5 6
r 0 3 3 25 1
t 0 0 2 0 9

Table 2.3: Confusion matrices for BBCsports for k-NN with OT-NMF. Columns rep-
resent the ground truth and lines predicted labels. Labels: athletism (a), cricket (c),
football (f), rugby (r) and tennis (t).

Taken from Rolet et al. [2016]

The classification error for OT-NMF with a French target vocabulary on BBC-
sports is rather bad, although the topics are coherent and related to the content of
the articles. The confusion matrix (Table 2.3) shows that more than half of the arti-
cles about tennis are misclassified. In fact, the other methods produce a topic about
tennis, but OT-NMF with a French dictionary does not. Table 2.4 shows the French
words closest to some English query words according to the ground metric. While the
closest words to football and bank are semantically related to their query word, the
closest words to tennis are not. This illustrates how our method relies on the ground
metric, given by word embeddings in this case.

football
football supporters championnat sportives sportifs joueurs sportif
jeux matches sport

bank
banque banques bei bancaire federal bank emprunts reserve crédit
bancaires

tennis
bienfaiteurs murray ex-membre ballet b92 sally sylvia markovic
hakim socialo-communiste

Table 2.4: 10 French words closest to some English words according to the ground
metric

Taken from Rolet et al. [2016]
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2.4 Chapter Conclusion

We show how to efficiently perform dictionary leaning and NMF using optimal trans-
port as the data fitting term, with an optional convex regularizer. Our method can
be applied to large datasets in high dimensions and does not require any assumption
on the cost matrix. We also show that with this data fitting term, the reconstruc-
tion DΛ can use different features than the data X. Other than our application to
cross-language topic modeling analysis, this can be used for example to reduce the
number of target features by quantization for the dictionary while keeping the original
features for the dataset.

While we only consider entropy as a barrier for positivity in this work, our approach
is valid other regularizers, as long as the gradient of R? can be computed efficiently.
We believe that extensions to other classes of regularizers is an interesting area for
future work.
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3.1 Chapter Introduction

Source separation is the task of separating a mixed signal into different components,
usually referred to as sources. In the context of sound processing, it can be used
to separate speakers whose voices have been recorded simultaneously. Blind source
separation (BSS) aims at doing so with only sound data, that is without information
such as the time when each source is active or the location of the sources with respect
to the recording devices. A common way to address this task is to decompose the
signal spectrogram by non-negative matrix factorization [NMF, Lee and Seung, 2001],
as proposed for example by Schmidt and Olsson [2006] as well as Sun and Mysore
[2013]. Denoting x̃j,i the (complex) short-time Fourier transform (STFT) coefficient of
the input signal at frequency bin j and time frame i, and X its magnitude spectrogram
defined as xj,i = |x̃j,i|, the BSS problem can be tackled by solving the NMF problem

min
D(1)...D(N),W (1)...W (N)

t∑
i=1

`

(
xi,

N∑
k=1

D(k)w
(k)
i

)
(3.1)

where N is the number of sources, t is the number of time windows, xi is the ith

column of X and ` is a loss function. Each dictionary matrix D(k) and weight matrix
W (k) are related to a single source. In a supervised setting, each source has training
data and all the D(k)s are learned in advance during a training phase. At test time,
given a new signal, separated spectrograms are recovered from the D(k)s and W (k)s
and corresponding signals can be reconstructed with suitable post-processing.

In the present chapter, we propose to use optimal transport as a loss between
spectrograms to perform supervised speech BSS with NMF. Optimal transport is
defined as the minimum cost of moving the mass from one histogram to another. By
taking into account a transportation cost between frequencies, this provides a powerful
metric to compare STFT spectrograms. One of the main advantage of using optimal
transport as a loss is that it can quantify the amplitude of a frequency shift noise,
coming for example from quantization or the tuning of a musical instrument. Other
metrics such as the Euclidean distance or Kullback-Leibler divergence, which compare
spectrograms element-wise, are almost blind to this type of noise (see Figure 3.1).
Another advantage over element-wise metrics is that optimal transport enables the use
of different quantizations, i.e. frequency supports, at training and test times. Indeed,
the frequencies represented on a spectrogram depend on the sampling rate of the signal
and the time-windows used for its computation, either of which can change between
training and test times. With optimal transport, we do not need to re-quantize the
training and testing data so that they share the same frequency support: optimal
transport is well-defined between spectrograms with distinct supports as long as we
can define a transportation cost between frequencies. Finally, the optimal transport
framework enables us to generalize the Wiener filter, a common post-processing for
source separation, by using optimal transport plans, so that it can be applied to data
quantized on different frequencies.

Using optimal transport as a loss between spectrograms was proposed by Flamary
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Figure 3.1: Comparison of Euclidean distance and (regularized) optimal transport
losses. Synthetic musical notes are generated by putting weight on a fundamental,
and exponentially decreasing weights on its harmonics and sub-harmonics, and finally
convoluting with a Gaussian. Left: examples of the spectrograms of two such notes.
Right: (regularized) optimal transport loss and Euclidean distance from the note of
fundamental 0.95kHz (red line on the left plot) to the note of fundamental 0.95kHz+σ,
as functions of σ. The Euclidean distance varies sharply whereas the optimal transport
loss captures more smoothly the change in the fundamental. The variations of the
optimal transport loss and its regularized version are similar, although the regularized
one can become negative.

Taken from Rolet et al. [2018]

et al. [2016] under the name “optimal spectral transportation”. They developed a
novel method for unsupervised music transcription which achieves state-of-the-art
performance. Their method relies on a cost matrix designed specifically for musical
instruments, allowing them to use Diracs as dictionary columns. That is, they fix
each dictionary column to a vector with a single non-zero entry and learn only the
corresponding coefficients. This trivial structure of the dictionary results in efficient
coefficient computation. However, this approach cannot be applied as is to speech
separation since it relies on the assumption that a musical note can be represented as
its fundamental. It also requires designing the cost of moving the fundamental to its
harmonics and neighboring frequencies. Because human voices are intrinsically more
complex, it is therefore necessary to learn both the dictionary and the coefficients, i.e.,
solve full NMF problems.

In this chapter we start by showing how previous works have been performing
blind source separation with non-negative matrix factorization. We then propose
a distance between frequencies, which allows us to perform optimal transport non-
negative matrix factorization on STFT spectrograms. We apply our NMF framework
to isolated voice reconstruction and show that an optimal transport loss yields better
results than other classical losses. We show that optimal transport yields comparable
results to other losses for BSS, where the sources to separate are voices. Moreover we
show that optimal transport achieves better results than other losses for learning a
“universal” voice model, i.e. a model that can be applied to any voice, regardless of
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the speaker. We use this universal voice model to perform speech denoising, which is
BSS where one of the source is a voice and the other is noise. Finally, we show how
to use our framework for cross-domain BSS, where frequencies represented in the test
spectrograms may be different from the ones in the dictionary. This may happen for
example when train and test data are recorded with different equipment, or when the
STFT is computed with different parameters.
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3.2 Signal Separation With NMF

We use a supervised BSS setting similar to the one described in Schmidt and Olsson
[2006]. For each source k we have access to training data X(k), on which we learn a
dictionary D(k) with NMF

min
W,D(k)

t∑
i=1

`(xi, D
(k)wi) +R1(W ) +R2(D(k)).

Then, given the STFT spectrum of a mixture of sources X, we reconstruct sep-
arated spectrograms X(k) = D(k)W (k) for k = 1, . . . N where W (k)s are the solutions
of

min
W (1),...,W (N)

t∑
i=1

`(xi,
N∑
k=1

D(k)w
(k)
i ) +

N∑
k=1

R1(W (k)).

The separated spectrograms X̂(k) are then reconstructed from each X(k) with the
process described in Section 3.3.2.

In practice at test time, the dictionaries are concatenated in a single matrix D =
(D(k))Nk=1, and a single matrix of coefficients W is learned, which we decompose as
W = (W (k))Nk=1. This allows us to focus on problems of the form

min
W,D

t∑
i=1

`(xi, Dwi) +R1(W ) +R2(D).

3.2.1 Voice-Voice Separation

We use the method described to separated the voices of two speakers on the same
soundtrack. In this case, we have access to training data on each speaker.

3.2.2 Denoising with Universal Models

We can also use BSS to denoise speech data. In this case, we do not have access
to training data for speakers in the test set. We only have access to data of other
speakers, which we use to learn a “universal” voice model, as in Sun and Mysore
[2013]. We also have two sources, the first one being a speaker and the second one a
noise source. Here, we are only interested in the reconstruction of the voice, that is
X̂(1).
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3.3 Method

We now present our approach for optimal transport BSS. First we define a transporta-
tion cost between frequencies, which allows us to perform optimal transport NMF on
STFT spectrograms. We further show a new method for going from a reconstructed
(separated) spectogram to a sound output, using optimal transport with our trans-
portation cost.

3.3.1 Cost Matrix Design

In order to compute optimal transport on spectrogams and perform NMF, we need
a cost matrix C, which represents the cost of moving weight from frequencies in the
original spectrogram to frequencies in the reconstructed spectrogram. Some general
approaches to automatically generate a cost matrix based on the data at hand have
been considered in the literature, notably in Cuturi and Avis [2014] and Huang et al.
[2016]. These approaches however both require labeled data and cannot be applied to
our problem. Instead we have to build a cost matrix based on what we know of the
physical properties of the data.

Schmidt and Olsson [2006] use the Mel scale to quantize spectrograms, relying
on the fact that the perceptual difference between frequencies is smaller for the high
frequency domain than for the low frequency domain. Following the same intuition,
we propose to map frequencies to a log-domain and apply a cost function in that
domain. Let fj be the frequency of the j-th bin in an input data spectrogram, where

1 ≤ j ≤ m. Let f̂ĵ be the frequency of the ĵ-th bin in a reconstruction spectrogram,

where 1 ≤ ĵ ≤ n. We define the cost matrix C ∈ Rm×n as

cjĵ =
∣∣∣log(λ+ fj)− log(λ+ f̂ĵ)

∣∣∣p (3.2)

with parameters λ ≥ 0 and p > 0. Since the Mel scale is a log scale, it is included in
this definition for some parameter λ. Some illustrations of our cost matrix for different
values of λ are shown in Figure 3.2, with p = 0.5. It shows that with our definition,
moving weights locally is less costly for high frequencies than low ones, and that this
effect can be tuned by selecting λ.

Figure 3.3 shows the effect of p on the learned dictionaries. Using p = 0.5 yields a
cost that is more spiked, leading to dictionary elements that can have several spikes
in the same frequency bands, whereas p ≥ 1 tends to produce smoother dictionary
elements.

Note that with this definition and p ≥ 1 , C is a distance matrix to the power p
when the source and target frequencies are the same. If p = 0.5, C is the point-wise
square-root of a distance matrix and as such is a distance matrix itself. OT(., .)1/p.
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Figure 3.2: λ parameter of the Cost Matrix. Influence of parameter λ of the cost
matrix. Left: cost matrix; center: sample lines of the cost matrix; right: dictionary
learned on the validation data. Top: λ = 1; center: λ = 100; bottom: λ = 1000.

Taken from Rolet et al. [2018]

Parameters p = 0.5 and λ = 100 yielded better results for Blind Source Separation
on the validation set and were accordingly used in all our experiments.

3.3.2 Post-processing

Separated spectra X(1) and X(2) do not give us separated sounds by themselves, they
miss the phase information since they were computed on the power part X of the
STFT spectrum only. If the separated spectra are in the same domain as X, it is
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Figure 3.3: Power of the Cost Matrix. Influence of the power p of the cost matrix.
Left: cost matrix; center: sample lines of the cost matrix; right: dictionary learned on
the validation data. Top: p = 0.5; center: p = 1; bottom: p = 2.

Taken from Rolet et al. [2016]

possible to simply apply to them the phase of the original STFT spectrum, however
this produces very audible artifacts, making the reconstructed voices sound “robotic”.
Instead a standard approach is to apply a Weiner filter. We start this section by
describing this procedure in order to produce sound output for each separated source,
and we follow by explaining how to use optimal transport concept in order to do so
even when the reconstructed spectra are in a different domain.
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3.3.2.1 Wiener Filter

In the case where the reconstruction is in the same frequency domain as the original
signal, the classical way to recover each voice in the time domain is to apply a Wiener
filter. Let X be the original Fourier spectrum, X(1) and X(2) the separated spectra
such that X ≈ X(1) + X(2). The Wiener filter builds X̂(1) = X � X(1)

X(1)+X(2) and

X̂(2) = X � X(2)

X(1)+X(2) , before applying the original spectrum’s phase and performing
the inverse STFT.

3.3.2.2 Generalized Filter

We propose to extend this filtering to the case where X(1) and X(2) are not in the
same domain as X. This may happen for example if the test data is recorded using a
different sample frequency, or if the STFT is performed with a different time-window
than the train data. In such a case, D(1) and D(2) are in the domain of the train
data, and to are X(1) and X(2), but X is in a different domain, and its coefficients
correspond to different sound frequencies. As such, we cannot use Wiener filtering.

Instead we propose to use the optimal transportation matrices to produce sepa-
rated signals X̂(1) and X̂(2) in the same domain as X. Let T(i) ∈ argmin

Π∈U(xi,x
(1)
i +x

(2)
i )

〈C,Π〉.

With Wiener filtering, xi is decomposed into its components generated by x
(1)
i and

x
(2)
i . We use the same idea and separate the transport matrix T(i) into:

T
(1)
(i) = T(i) diag

(
x

(1)
i

x
(1)
i + x

(2)
i

)

T
(2)
(i) = T(i) diag

(
x

(2)
i

x
(1)
i + x

(2)
i

)

T
(1)
(i) (resp. T

(1)
(i) ) is a transport matrix between
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(resp. x̂i
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(2) = T (i) x

(2)
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Similarly to the classical Wiener filter, we have

x̂i
(1) + x̂i

(2) = T (i) x
(1)
i

x
(1)
i + x

(2)
i

+ T (i) x
(2)
i

x
(1)
i + x

(2)
i

= T (i)1

= xi

Because of this property, the couple (x̂i
(1), x̂i

(2)) is a fix point of the Wiener Filter.
Similarly to the Weiner Filter, we then apply the original phase to X̂(1) and X̂(2) in
order to produce separated sounds.

We show in the next section that using this optimal transport filter improves results
on cross-domain experiments, when compared to the alternative of re-quantizing the
dictionaries to fit the domain of the test data.
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3.4 Results

In this section we present the main empirical findings of Rolet et al. [2018]. We
start by describing the dataset that we used and the pre-processing we applied to it.
We then show that the optimal transport loss allows us to have perceptually good
reconstructions of single voices, even with few dictionary elements. We show that the
optimal transport loss yields comparable results to other classical losses for voice-voice
BSS with an NMF model. We also show that our generalized filter yields very similar
results to the Wiener filter in the single-domain setting, and can improve upon it in
the cross-domain setting. Finally, we show that the optimal transport improves upon
these other losses when using a universal voice model for voice denoising.

3.4.1 Dataset and Pre-processing

3.4.1.1 Voice data

We evaluate our method on the English part of the Multi-Lingual Speech Database
for Telephonometry 1994 dataset1. The data consists of recordings of the voice of
four males and four females pronouncing each 24 different English sentences. We split
each person’s audio file time-wise into 25%-75% train-test data.

3.4.1.2 Noise data

For the speech denoising experiment we consider 4 types of noises: cicadas, drums,
subway and sea. For each we gathered one file for training and one file for testing from
non-copyrighted sources on the internet2. We trimmed the training files so that they
are approximately 20 seconds long, and made sure that test files were longer than the
voice test sounds. Note that for each noise type the training and testing files were
gathered using the same keywords, but can still have quite a bit of variability.

3.4.1.3 Pre-processing

All sound files are re-sampled to 16kHz and treated as mono signal. The signals are
analyzed by STFT with a Hann window, and a window-size of 1024, leading to 513
frequency bins ranging from 0 to 8kHz. The constant coefficient is removed from the
NMF analysis and added for reconstruction in post-processing.

1http://www.ntt-at.com/product/speech2002/
2See availability of data section in Rolet et al. [2018]
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3.4.1.4 Parameter selection

Hyper-parameters are selected on validation data consisting if the first male and female
voice, which are excluded from the evaluation set. We choose the parameters which
yield the best SDR score in the voice-voice BSS experiment for these voices. We also
use these voices as the training data for the universal voice model.

3.4.1.5 Initialization

Initialization is performed by setting each value of the dictionary matrix as a random
number picked uniformly in [0, 1]. It would be possible to set each dictionary column to
the optimal transport barycenter (computed for example with Benamou et al. [2015])
of all the time frames of the training data, and adding Gaussian noise (separately
for each column). However we did not notice a significant improvement with this
initialization, and we only report here the scores with completely random initialization
so that the results are comparable to the other methods. When training a model for
any loss, we perform the NMF 4 times and keep the model with minimum training
loss to reduce the impact of random initialization.

3.4.2 NMF Audio Quality

We first show that using an optimal transport loss for NMF leads to better perceptual
reconstruction of voice data. To that end, we evaluated the PEMO-Q score [Huber
and Kollmeier, 2006] of isolated test voices.

3.4.2.1 Personal Voice Model

Figure 3.4 shows the mean and standard deviation of the scores for k ∈ {5, 10, 15, 20}
with optimal transport (OT), Kullback-Leibler (KL), Itakura-Saito (IS) or Euclidean
(E) NMF. In this setting the dictionaries are learned separately on the training data
for each voice. These dictionaries are the same as in the following single-domain
voice-voice separation experiment. The PEMO-Q score of optimal transport NMF is
higher for any value of k, although KL and IS results are still competitive. We found
empirically that other scores such as SDR or SNR tend to be better for the Euclidean
NMF, even though the reconstructed voices are clearly worse when listening to them
(see additional files 1 and 2). Optimal transport can reconstruct clear and intelligible
voices with as few as 5 dictionary elements.
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Figure 3.4: Perceptive Quality Score (personal voice model). Average and standard de-
viation of PEMO scores of reconstructed isolated voices, where the model is learned us-
ing separate training data for each voice with optimal transport (dark blue), Kullback-
Leibler (light-blue), Itakura-Saito (green) or Euclidean (yellow) NMF.

Taken from Rolet et al. [2018]

3.4.2.2 Universal Voice Model

Figure 3.5 shows the mean and standard deviation of the scores for k ∈ {5, 10, 15,
20} with optimal transport, Kullback-Leibler, Itakura-Saito or Euclidean NMF, in
the universal voice model setting. Here only one dictionary is learned for all voices,
with the training data of our validation voices. We kept this dictionary for the speech
denoising experiment. The PEMO-Q score of optimal transport NMF is significantly
higher for any value of k. We believe that because optimal transport compares spec-
trogram by looking at the optimal flow between their frequencies, the variation of
pitch between two speakers become less important that the overall patterns of human
voices. Indeed the scores with optimal transport are very similar whether we use
a universal or a personal voice model, whereas they drop significantly for the other
losses when using a universal model.
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Figure 3.5: Perceptive Quality Score (universal voice model). Average and standard
deviation of PEMO scores of reconstructed isolated voices, where the model is learned
using the same training data for all voices with optimal transport (dark blue), Kullback-
Leibler (light-blue), Itakura-Saito (green) or Euclidean (yellow) NMF.

Taken from Rolet et al. [2018]

3.4.3 Voice-voice Blind Source Separation

We evaluate our Blind Source Separation using the classical signal-to-distortion ratio
(SDR) scores evaluated on reconstructed audio files using the Matlab toolbox BSS
eval v2.1 [Vincent et al., 2006].

3.4.3.1 Single-Domain Blind Source Separation

We first use NMF to perform BSS in the case of mixtures of two voices, where we
have training data for each voice. Here the spectrograms of the training and test
data represent the same frequencies: both the training and test data are processed in
exactly the same way, so that at train and test time (fi)i = (f̂i)i. We compare using
the optimal transport loss for NMF to the Kullback-Leibler divergence, the Itakura-
Saito divergence or the Euclidean distance. For baseline methods, we reconstruct
the signal using a Wiener filter before applying inverse STFT. For optimal transport-
based source separation, we evaluate separation using either the Wiener filter or our
generalized filter.
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Figure 3.6 shows mean and standard deviation of the SDR, SIR and SAR scores
for each method. We can see that although KL NMF achieves a better SDR score,
the variability is actually high and the results are comparable for all method.

3.4.3.2 Cross-Domain Blind Source Separation

In this experiment, we artificially generate spectrograms which represent different
frequencies for the training and test data by simply changing the STFT window size.
For the training data we use a window of size 512, and a window of size 800 for the
test data.

Although (fi)i 6= (f̂i)i, we can still compute optimal transport between the spec-
trograms thanks to our cost matrix, and thus we can use the trained dictionary as is
to compute the weight matrix at test time.

In order to compute the weight matrix for the other losses however, we first need
to re-quantize the dictionary matrix so that it represents the same frequencies as the
test data. We do it by assigning each frequency in the smaller spectrogram to its
closest frequency in the larger one. This can be done with the simple linear operation
D ← AD with

ai,j =

1 if j = min argmin
k
|fi − f̂k|

0 otherwise.

Figure 3.7 shows mean and standard deviation of the SDR, SIR and SAR scores
for each method. In the case of the optimal transport loss, we report both the result
with the generalized filter, and the Wiener filter applied to AX(k). We can see that
the SDR scores have dropped a lot, except with the optimal transport loss combined
to our generalized filter. We notice a similar effect on the signal-to-artifact ratio
(SAR), meaning that the separation process has created artifacts, which are actually
very noticeable when listening the the reconstructed sound, except when using the
generalized filter. This is probably due to the fact that the heuristic mapping process
cancels a lot of frequencies which were in the test data.

3.4.4 Universal Voice Model for Speech Denoising

3.4.4.1 Setting

We now use NMF to first learn a universal speech model and noise models, and then
apply these models for speech denoising. The universal speech model is learned on the
concatenated training data of the first male and first female voices of our dataset. For
each noise type, we learn a model with NMF on its training data. We then mix test
voices with test noise with a pSNR of 0, and use our BSS approach to separate the
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voice. All the scores reported are evaluated on the voices only, since reconstruction
of the noise is not our goal here.

In this experiment we kept the same parameters for the cost matrix of optimal
transport as in the ones selected in the voice-voice BSS experiment. We report the
scores for each dictionary size k in {5, 10, 15, 20}.

3.4.4.2 Results

We can see from Table 3.1 and Table 3.2 that the optimal transport yields significantly
better SDR and SIR than other methods for all noises except “sea”. This is consistent
with our observation that the optimal transport loss allows to good reconstruction
with a universal model.

OT OT + OT filter KL IS E

k k k k k
5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20

cicada
7.7 8.8 8.9 8.4 7.3 8.0 8.6 8.1 7.7 7.9 7.9 7.9 7.7 7.9 7.6 7.7 7.9 8.0 7.9 7.5
± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.1

drums
1.3 3.6 2.7 2.8 1.5 3.8 2.7 2.9 2.0 3.3 2.6 3.1 0.5 0.9 0.6 1.0 1.9 3.4 2.0 2.0
± 0.6 ± 0.7 ± 0.7 ± 0.5 ± 0.5 ± 0.6 ± 0.7 ± 0.6 ± 0.3 ± 0.7 ± 0.4 ± 0.4 ± 0.2 ± 0.1 ± 0.1 ± 0.0 ± 0.6 ± 0.5 ± 0.4 ± 0.3

sea
0.0 1.5 3.3 1.8 0.0 1.8 3.3 1.9 1.6 3.4 4.6 4.3 1.6 3.0 3.7 3.5 3.5 4.1 4.4 3.8
± 0.9 ± 0.7 ± 0.5 ± 1.1 ± 0.8 ± 0.6 ± 0.5 ± 1.0 ± 1.3 ± 1.0 ± 0.8 ± 0.7 ± 0.8 ± 0.6 ± 0.6 ± 0.5 ± 1.1 ± 0.9 ± 0.9 ± 0.6

subway
2.0 2.8 1.5 2.2 1.8 2.8 1.6 2.3 1.8 2.0 1.9 1.8 2.0 1.4 1.7 2.1 1.5 1.8 1.7 1.7
± 1.1 ± 0.9 ± 0.9 ± 1.2 ± 1.0 ± 1.0 ± 0.9 ± 1.2 ± 1.3 ± 1.6 ± 0.9 ± 0.9 ± 0.6 ± 0.3 ± 0.3 ± 0.4 ± 1.9 ± 1.2 ± 1.0 ± 0.9

Table 3.1: Speech denoising SDR scores
Taken from Rolet et al. [2018]

OT OT + OT filter KL IS E

k k k k k
5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20

cicada
8.5 10.0 10.2 9.6 8.0 8.8 9.7 9.1 8.5 8.8 8.8 8.9 8.5 8.8 8.5 8.6 8.7 8.8 8.7 8.4
± 0.1 ± 0.0 ± 0.1 ± 0.1 ± 0.1 ± 0.0 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.1

drums
1.9 5.5 3.6 3.8 2.1 5.6 3.6 3.9 2.8 4.2 3.2 3.6 0.7 1.1 0.7 1.1 3.1 4.7 2.6 2.5
± 0.4 ± 0.7 ± 0.6 ± 0.6 ± 0.3 ± 0.6 ± 0.6 ± 0.6 ± 0.2 ± 0.6 ± 0.4 ± 0.4 ± 0.2 ± 0.1 ± 0.1 ± 0.0 ± 0.6 ± 0.5 ± 0.4 ± 0.3

sea
1.4 2.8 4.6 3.0 1.3 3.0 4.6 3.0 4.7 6.2 6.7 6.2 4.2 5.0 5.7 5.4 10.1 8.9 8.1 5.5
± 0.9 ± 0.6 ± 0.4 ± 1.0 ± 0.8 ± 0.6 ± 0.4 ± 1.0 ± 1.0 ± 0.8 ± 0.6 ± 0.5 ± 0.3 ± 0.5 ± 0.6 ± 0.4 ± 1.0 ± 0.6 ± 0.6 ± 0.4

subway
6.2 6.4 3.1 4.7 5.5 5.9 3.0 4.7 5.2 4.5 3.1 3.1 4.0 2.2 2.1 2.9 5.3 4.8 4.2 3.4
± 1.3 ± 0.9 ± 1.0 ± 1.2 ± 1.0 ± 0.9 ± 1.0 ± 1.2 ± 1.6 ± 1.7 ± 0.9 ± 0.9 ± 0.8 ± 0.4 ± 0.4 ± 0.5 ± 2.3 ± 1.3 ± 1.0 ± 0.9

Table 3.2: Speech denoising SIR scores
Taken from Rolet et al. [2018]
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OT OT + OT filter KL IS E

k k k k k
5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20

cicada
16.1 15.7 15.2 15.3 16.5 16.6 15.6 15.7 15.9 15.7 15.8 15.4 16.4 15.9 15.5 15.3 16.3 16.2 16.2 15.6
± 0.3 ± 0.3 ± 0.2 ± 0.2 ± 0.3 ± 0.4 ± 0.2 ± 0.2 ± 0.3 ± 0.3 ± 0.3 ± 0.2 ± 0.4 ± 0.3 ± 0.3 ± 0.2 ± 0.4 ± 0.3 ± 0.3 ± 0.3

drums
12.5 9.0 11.6 11.1 12.9 9.5 11.8 11.4 11.7 12.1 13.4 14.0 17.9 17.4 20.7 19.9 9.9 10.5 12.7 13.7
± 1.7 ± 0.5 ± 0.6 ± 0.4 ± 1.5 ± 0.5 ± 0.6 ± 0.5 ± 1.6 ± 0.7 ± 0.5 ± 0.4 ± 2.1 ± 1.1 ± 0.4 ± 0.4 ± 0.8 ± 0.4 ± 0.4 ± 0.4

sea
8.1 9.4 10.3 9.8 8.5 10.0 10.5 10.2 5.8 7.6 9.5 9.8 6.6 8.5 9.2 9.3 5.1 6.4 7.5 9.9
± 1.8 ± 0.9 ± 0.7 ± 1.0 ± 1.8 ± 0.9 ± 0.7 ± 1.0 ± 1.4 ± 1.3 ± 1.2 ± 1.0 ± 1.5 ± 0.9 ± 0.7 ± 1.1 ± 1.4 ± 1.1 ± 1.1 ± 1.1

subway
5.0 6.3 8.6 7.1 5.4 6.8 8.8 7.3 5.9 7.1 10.0 9.5 7.8 11.6 13.6 11.9 5.0 6.3 6.8 8.3
± 1.3 ± 1.0 ± 0.5 ± 1.0 ± 1.3 ± 1.1 ± 0.5 ± 1.0 ± 1.3 ± 1.2 ± 0.9 ± 1.0 ± 0.9 ± 1.1 ± 0.7 ± 0.5 ± 1.4 ± 1.0 ± 1.0 ± 0.8

Table 3.3: Speech denoising SAR scores
Taken from Rolet et al. [2018]

3.4.4.3 Dictionaries

Figures 3.8 and 3.9 show the dictionaries learned for the universal voice model and
the cicada noise respectively, with all losses and a dictionary size of 5 and 10. The
dictionaries learned with optimal transport tend to be smoother, and maybe with less
overlap between dictionary elements. They seem to have high activation on bands,
rather than isolated frequencies, and each dictionary element has only a few bands
with high activation. The IS loss seems to induce similar effect to a lesser extent,
while the KL and even more so the Euclidean loss tend to be spiked, with a lot of
spikes for a same dictionary element, and more redundancy between elements.

3.4.4.4 Running times

Our implementation of the method in Python with numpy on 3 CPU cores of 2.93gHz
takes about 3 minutes to fully learn a dictionary of 5 elements on the cicada training
data, which is about 20s long, leading to spectrograms in R512×724. Test times are
around 2 minutes for sound files of around 50s, which is not real-time but close. We
used rather tight convergence criteria in these experiments and we believe that these
times could be reduced by using better hardware (multi-core, GPUs) and looser con-
vergence criteria. For comparison, computing times for the KL loss, with a similar
alternate minimization scheme (with inner optimizations performed with the multi-
plicative updates of Lee and Seung [2001]) and the same convergence criteria is about
50s for training, and about 20s for testing.
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Figure 3.6: Voice-voice Separation Score (single-domain). Average and standard devi-
ation of SDR, SIR and SAR scores for voice BSS, in the single-domain setting where
training and testing spectrograms represent the same frequencies. The scores are for
NMF with optimal transport (dark blue), optimal transport with our generalized fil-
ter (light blue), Kullback-Leibler (green), Itakura-Saito (brown) or Euclidean (yellow)
NMF.

Taken from Rolet et al. [2018]
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Figure 3.7: Voice-voice Separation Score (cross-domain). Average and standard devi-
ation of SDR, SIR and SAR scores for voice BSS , in the cross-domain setting where
training spectrograms have fewer frequencies than testing spectrograms. The scores
are for NMF with optimal transport (dark blue), optimal transport with our gener-
alized filter (light blue), Kullback-Leibler (green), Itakura-Saito (brown) or Euclidean
(yellow) NMF.

Taken from Rolet et al. [2018]
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Figure 3.8: Universal Voice Model Dictionaries. Dictionaries learned for the uni-
versal model. Top row: spectrogram of the training data. Middle and bottom row:
dictionaries learned with respectively 5 and 10 elements, with the optimal transport,
Kullback-Leibler, Itakura-Saito and Euclidean loss (from left to right).

Taken from Rolet et al. [2018]
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Figure 3.9: Noise Dictionaries. Dictionaries learned for the cicada noise. Top row:
spectrogram of the training data. Middle and bottom row: dictionaries learned with
respectively 5 and 10 elements, with the optimal transport, Kullback-Leibler, Itakura-
Saito and Euclidean loss (from left to right).

Taken from Rolet et al. [2018]
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3.5 Discussion

3.5.1 Regularization of the Transport Plan

In this work we considered entropy-regularized optimal transport as introduced by
Cuturi [2013]. This allows us to get an easy-to-solve dual problem since its convex
conjugate is smooth and can be computed in closed form. However, any convex
regularizer would yield the same duality results, and could be considered as long as
its conjugate is computable. For instance, the squared L2 norm regularization was
considered in several recent works [Blondel et al., 2018, Seguy et al., 2018] and was
shown to have desirable properties such as better numerical stability or sparsity of the
optimal transport plan. Moreover, similarly to entropic regularization, it was shown
that the convex conjugate and its gradient can be computed in closed form [Blondel
et al., 2018].

3.5.2 Learning Procedure

Following the work of Rolet et al. [2016], we solved the NMF problem with an alter-
nating minimization approach, in which at each iteration a complete optimization is
performed on either the dictionary or the coefficients. While this seems to work well
in our experiments, it would be interesting to compare with smaller steps approaches
like in Lee and Seung [2001]. Unfortunately such updates do not exist to our knowl-
edge: gradient methods in the primal would be prohibitively slow, since they involve
solving t large optimal transport problems at each iteration.

3.5.3 Future Work

3.5.3.1 Sparsity

Many works using NMF for sound processing add sparsity-inducing regularization to
the NMF loss. This is usually achieved with a l1 regularization on the coefficient
matrix W [Sun and Mysore, 2013, Li et al., 2004]. We believe such sparsity would also
benefit our approach, although l1 regularization cannot be applied directly. Indeed
we have constraints of the form ‖Dwi‖1 = ‖xi‖1, and since all columns of D are in
the simplex, this is equivalent to ‖wi‖1 = ‖xi‖1, so we already have a hard constraint
on the l1 norm of W . One solution to this problem is to use an ”unbalanced” optimal
transport loss[Frogner et al., 2015, Chizat et al., 2018], for which both input do not
need to have the same total weight. Unbalanced versions of optimal transport as
defined in Chizat et al. [2018] do not have an easy to compute convex conjugate
to the best of our knowledge, but Gramfort et al. [2015] casts unbalanced optimal
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transport into a regular optimal transport problem, and our approach should work
with this loss.

3.5.3.2 Multi-channel Sound Processing

In order to use our framework with multi-channel sound input, the main issue is to
have an optimal transport loss between multi-channel spectrograms. A simple way
to solve this is to simply treat channels separately and sum the loss on each channel.
A more interesting approach in our opinion would be to design a cost matrix which
would encode the cost of moving power not only between frequencies, but also between
channels.

3.5.3.3 Optimal Transport in Other Models

We believe optimal transport can improve upon other losses between spectrograms in
many sound processing tasks, as long as the loss is evaluated between spectrograms.
For instance, one can use a speech-denoising auto-encoder as done by Ishii et al. [2013]
and use the optimal transport loss with our proposed cost matrix on the reconstructed
spectrograms. However the simple linear model of NMF used in our method allows
us to have simple and easy to optimize duals. This is not the case with deep neu-
ral networks and one would have to resort to more computationally involved primal
gradient-based approaches as in Frogner et al. [2015] or Montavon et al. [2016].
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CHAPTER 3. BLIND SOURCE SEPARATION WITH OPTIMAL TRANSPORT
NON-NEGATIVE MATRIX FACTORIZATION

3.6 Chapter Conclusion

We showed that using an optimal transport based loss can improve performance of
NMF-based models for voice reconstruction and separation tasks. We believe this is
a first step towards using optimal transport as a loss for speech processing, possibly
using more complicated models such as sparse NMF or deep neural networks. The
versatility of optimal transport, which can compare spectrograms on different fre-
quency domains, lets us use dictionaries on sounds that are not recorded or processed
in the same way as the training set. This property could also be beneficial to learn
common representations (e.g. dictionaries) for different datasets.
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CHAPTER 4. OPTIMAL TRANSPORT REGULARIZED PROJECTION

4.1 Chapter Introduction

Coefficient shrinkage has long been a staple method for signal denoising [Donoho,
1995, Kaur et al., 2002]. In its simplest form, it consists in soft-thresholding the
coefficients of a signal in the spectral domain (e.g. wavelet or Fourier), before going
back to the signal domain. Let x be a vector representing a signal, D be the matrix
representing a wavelet or Fourier basis, and λ be the coefficients of x in the spectral
domain (x = Dλ). Coefficient shrinkage of x is Dθα(λ) = Dθα(D−1x), for some
α ≥ 0 and with θα := λ 7→ sign(λ)(λ − α)+. Figure 4.1 explicits wavelet shrinkage
as a 3-steps process: i) perform wavelet transform, ii) shrink the coefficients and iii)
perform the inverse transform.

transform

inverse

transform

s
h
r
i
n
k
a
g
e

Figure 4.1: Wavelet coefficient shrinkage procedure, with Daubechies wavelets of order
2 at the second decomposition level.

If D is orthonormal, which is the case for orthogonal wavelets and the discrete
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cosine transform, coefficient shrinkage amounts to the lasso problem:

θα(x) = argmin
λ
‖x−Dλ‖2

2 + α‖λ‖1.

More generally, this problem falls in the scope of regularized least square problems:

min
λ
‖x−Dλ‖2

2 +R(λ),

which can also be thought of as a regularized Euclidean projection, where ‖x−Dλ‖2
2

is a closeness term and R is used to enforce desired properties on λ. Using an `1 norm
as R leads to coefficient shrinkage, while an indicator function leads to pass-type
filtering for example.

Using the Euclidean distance as the signal closeness term leads to artifacts on the
reconstructed image Dλ. For example, filtering out high frequency components in
the Fourier domain tends to create a “wave” pattern around sharp edges (Figure 4.2).
In order to reduce these artifacts we propose to use instead the optimal transport
distance, which instead of comparing images pixel-by-pixel, compute the best way to
“transport” the intensity of the pixels of an image to fit the other image. This means
that images are compared overall, instead of separately for each pixel, yielding less
artifact on the reconstructed image, as shown in Figure 4.2c compared to Figure 4.2b.

(a) Original image (b) Euclidean filter (c) Optimal transport filter

Figure 4.2: Effect of using the Euclidean or optimal transport distance as the closeness
term for low pass filtering.

Taken from Rolet and Seguy [2021]

In this chapter, we study regularized projection of an image onto a fixed basis,
or dictionary, where the reconstruction error is evaluated using the optimal transport
distance. Projection onto a dictionary with respect to the optimal transport distance
has been studied for musical note transcription [Flamary et al., 2016], and in the
context of dictionary learning and non-negative matrix factorization [Sandler and
Lindenbaum, 2009, Rolet et al., 2016, 2018]. However these works did not consider
the effect of different regularizers, sparsity-inducing or otherwise, nor did they analyze
the qualitative effect of using the optimal transport as the reconstruction error for
image processing specifically.
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Our contributions

We give simple conditions on D and R for existence and unicity of the optimal trans-
port regularized projection. We derive a method to compute this projection that can
be used for any convex regularizer R and dictionary D. We further give fast algorithms
for special cases depending on the properties of R and D. This allows us to perform
pass-type filtering and sparse decomposition of images onto wavelet or Fourier bases,
which was not possible using the previously existing methods of Rolet et al. [2016].
Finally, we show how using the optimal transport distance as the reconstruction error
leads to reduced artifacts for same level of sparsity when compared to the Euclidean
distance.

This chapter is organized as follows: We start in Section 4.2 by giving compu-
tational methods for solving optimal transport regularized projection. Building on
these methods, we show in Section 4.3 how to perform optimal transport hard and
soft thresholding and pass-type filtering, and compare optimal transport to the Eu-
clidean distance in each case.
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4.2 Methods

We now show how to solve regularized optimal transport projection problems. Let
us fix D ∈ Rn×k

+ , x ∈ Rn
+, and let R be a convex function. The regularized optimal

transport projection of x onto D is the solution of

min
λ∈Rk

OTγ(x, Dλ) +R(λ). (4.1)

We proposed in Rolet et al. [2016] fast dual methods for this problem either without
a regularizer, or where R is the entropy in order to enforce non-negativity, in the
context of NMF. We extended their methods for convex regularizers R with a smooth
convex conjugate R∗ in Rolet and Seguy [2021], which is summarized in Theorem 2.2.5.
We now show how to solve this problem when R∗ is not smooth but D is orthonormal
or simply invertible, using the methods we proposed in Rolet and Seguy [2021]. These
methods work as long as we have access to the proximal operator or R∗, either through
a formula or a tractable algorithm. Finally, we propose a general method which only
requires a computable proximal operator for R.

4.2.1 Dual Problem

Most methods of this chapter are based on solving the dual problem defined in The-
orem 2.2.5. In the regularized projection case, it can be rewritten as:

Theorem 4.2.1. The solution λ? of Problem 4.1 satisfies the primal-dual relationship

Dλ? = ∇OT∗γ(x,h
?) (4.2)

where h? is the solution of the dual problem

min
h∈Rn

OT∗γ(x,h) +R∗(−D>h). (4.3)

The main point of working with Problem 4.3 instead of the primal problem directly
is that it does not require us to compute OTγ, but only its conjugate. On one hand,
it allows us to get much faster algorithms (see Section 4.2.4), and on another it also
allows us to solve some problems which we do not know how to solve in the primal,
such as `1 regularized projection, i.e. coefficient shrinkage.

If R∗ is smooth and its gradient can be computed efficiently, we can solve Prob-
lem (4.3) with an accelerated gradient method [Nesterov, 1983], as we did in Chapter 2.

The existence and unicity conditions of Chapter 2 still apply. In particular if D is
invertible and γ > 0, there is a unique solution to Problem 4.1.
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4.2.2 Saddle Point Problem

If R∗ is not smooth, or if its gradient is expensive to compute, we can still compute
the projection by solving a saddle point problem:

Theorem 4.2.2 (Primal-Dual). Let (h?,λ?) be a solution of

min
h∈Rn

max
λ∈Rk

OT∗γ(x,h) +
〈
−D>h,λ

〉
−R(λ). (4.4)

Then λ? is a solution of Problem 4.1.

Proof. The proof follows the same path as in Rolet et al. [2016], where R was the
non-negative entropy. We rewrite Problem (4.1) as:

min
λ∈Rk
p∈Rn+
Dλ=p

OTγ(x,p) +R(λ).

It is a convex problem with linear constraints so strong duality holds, the problem
is then:

max
h∈Rn

min
λ∈Rk
p∈Rn+

OTγ(x,p)− 〈h,p−Dλ〉+R(λ).

By definition of OT∗γ, we get

max
h∈Rn

min
λ∈Rk

−OT∗γ(x,h) + 〈h, Dλ〉+R(λ)

− min
h∈Rn

max
λ∈Rk

OT∗γ(x,h) +
〈
−D>h,λ

〉
−R(λ)

We propose to solve Problem 4.4 with a primal-dual approach such as Condat
[2013] or Lorenz and Pock [2015]. We use the algorithm defined in Theorem 9 of
Lorenz and Pock [2015] to make use of preconditioning. Following their notations, we
set: {

Q = OT∗γ(x, ·), G = 0, K = −D>,
F ∗ = R, P ∗ = 0, αk = 0, ∀k.

This leads to updates:


hk+1 = hk − τ(∇OT∗γ(x,h

k)−Dλk)
ξk+1 = 2hk+1 − hk

λk+1 = proxσR(λk − σD>ξk+1),

80



4.2. METHODS

where proxf denotes the proximal operator of a function f . Solving the saddle-point
problem in that way tends to be slow compared to full dual approaches, as we show
in Section 4.2.4. We now focus on special conditions which allow to expand on The-
orem 4.2.1.

4.2.3 Special Case: Invertible Dictionary

In the case where R∗ is not smooth, we cannot solve Problem (4.3) directly with first
order methods. However if D is invertible we can rewrite the problem and solve it
with proximal methods.

Theorem 4.2.3. Let D ∈ Rn×n be an invertible matrix. The solution λ? of Prob-
lem 4.1 satisfies

λ? = D−1∇OT∗γ(x,−D>−1g?) (4.5)

where g? is the solution of

min
g∈Rn
−D>h=g

OT∗γ(x,−D>−1g) +R∗(g). (4.6)

Proof. Problem 4.6 is obtained by the change of variable −D>h = g in Problem 4.3.
This same change of variable gives us Dλ? = ∇OT∗γ(x,−D>−1g?).

Assuming that we have access to the proximal operator of R∗, we can solve Prob-
lem 4.6 efficiently with a proximal method such as FISTA[Beck and Teboulle, 2009].

4.2.3.1 Orthonormal dictionary

In the case where D is orthonormal, the problem of learning the coefficients can be
solved with the invertible special case.

Another solution arises if we rewrite Problem (4.3) as

min
h∈Rn

OT∗γ(x,h) + Π(h), (4.7)

where Π(h) = R∗(−D>h). We can solve this new problem with FISTA. Indeed, since
D is orthonormal, the proximal operator proxΠ of Π can be computed easily. By
definition we have

proxΠ(h) = argmin
y∈Rn

‖h− y‖2 −R∗(−D>y).
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Using the change of variable z = −D>y, we have

proxΠ(h) = −D argmin
z∈Rn

‖h+Dz‖2 −R∗(z).

Since D is orthonormal, it follows that

‖h+Dz‖2 = ‖ −D>h−D>Dz‖2

= ‖ −D>h− z‖2.

We can thus compute the proximal operator of Π from that of R∗:

proxΠ(h) =−D argmin
z∈Rn

‖ −D>h− z‖2 −R∗(z)

=−D proxR∗(−D>h).

The primal-dual relationship becomes

λ? = D>∇OT∗γ(x,h
?). (4.8)

We sum up our proposed methods in Table 4.1.

Table 4.1: Algorithms available based on the properties of R and D

Conditions Method Gradient Proximal operator Primal-dual relationship

R∗ differentiable
accelerated
gradient1

∇OT∗γ(x,h)

−D∇R∗(−D>h)
Not used Dλ? = ∇OT∗γ(x,h?)

D invertible FISTA2 −D−1∇OT∗γ(x,−D−1>g) proxR∗(g) λ? = D−1∇OT∗γ(x,−D>−1g?)

D orthonormal FISTA2 ∇OT∗γ(x,h) −D proxR∗(−D>h) λ? = D>∇OT∗γ(x,h?)

None
forward-
backward
splitting3

∇OT∗γ(x,h) proxR(h) λ? is already available

4.2.4 Time Comparisons

4.2.4.1 Primal VS dual algorithms

In order to compare computation times between a direct primal method and our dual
algorithms, we have to select a problem for which similar algorithms can be used,

1Nesterov [1983]
2Beck and Teboulle [2009]
3Lorenz and Pock [2015]

82



4.2. METHODS

FISTA in this case. In particular we need a problem which can be divided into a
smooth part and a part for that has a tractable proximal operator. Let us consider
the simple following problem:

min
λ∈Rk

1>Dλ=1>x
Dλ≥0

OTγ(x, Dλ) + α‖λ‖2
2,

where D is the an orthonormal matrix4. We can project any λ on the constraint
1>Dλ = 1>x by projecting Dλ on the non-negative part of the `1 sphere of radius
1>x, and then applying D> to the result. The objective is differentiable, we compute
the optimal transport part and its gradient with the Sinkhorn algorithm [Cuturi, 2013].

This algorithm’s computational bottleneck is also the multiplication with K = e
C
γ , so

it benefits from the convolution acceleration defined in Section 1.1.3 as much as our
dual methods do.

We also solve the problem with the invertible case of Section 4.2.3, with R(λ) =
α‖λ‖2

2. We then have R∗(h) = α
4
‖h‖2

2 and proxR∗(h) = h
1+α/2

.
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Figure 4.3: Optimality gap with respect to time for a simple l2-regularized projection
with a primal approach or our dual approach. Left: FISTA with backtracking line-
search. Right: FISTA with a fixed step-size.

Taken from Rolet and Seguy [2021]

Figure 4.3 shows a time comparison of the FISTA algorithm used to solve the
primal or dual problem, with either a fixed step-size or a step-size chosen by back-
tracking line-search. As the figure shows, our dual algorithm is orders of magnitude
faster in any of the settings. For both methods, the backtracking line-search heuristic
for choosing the step-size leads to faster convergence. However for the primal method,
the precision σ to which we solve the regularized transport problem has a direct influ-
ence on the quality of the gradient. As a result backtracking line-search is not able to
select positive step-size after getting close to the optimal solution when the precision
of the Sinkhorn algorithm is too low.

4Since D is orthonormal, the problem is actually equivalent to simply min
λ

OTγ(x,λ) + α‖λ‖22.
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4.2.4.2 Saddle point VS dual algorithms

We now compare computation time for an optimal transport regularized projection
problem using a primal-dual approach and a fully dual approach. We perform opti-
mal transport coefficient shrinkage on the DCT coefficients of a 256×256 image using
our dual approaches of Section 4.2.3 and the saddle point approach of Section 4.2.2.
Although the saddle-point approach has the advantage of being valid for any dictio-
nary D, Figure 4.4 shows that it is orders of magnitude slower to converge than dual
approaches.
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Figure 4.4: Computation time for a same sparse projection problem with a primal-dual
method or dual methods.

Taken from Rolet and Seguy [2021]
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4.3 Applications

In this section, we show how to use the fast regularized projection methods we derived
to perform optimal transport filtering, coefficient shrinkage and hard thresholding. We
examine qualitative and quantitative differences of using optimal transport instead of
the Euclidean distance on different image processing tasks, namely low-pass filtering,
compressing and denoising.

4.3.1 Optimal Transport Filtering

Filtering is the process of setting a subset of the components of λ to 0. Let N be the
set of indices of the components that we want to filter out, optimal transport filtering
is performed by solving

min
λ∈Rk

λi=0∀i∈N

OTγ(x, Dλ).

Although this problem can be solved by removing all non-relevant columns in D
and using the non-regularized algorithm in Rolet et al. [2016], in the case of filtering
components of DCT or wavelet transforms we can make use of our orthonormal dic-
tionary case of Section 4.2.1 to get a simpler algorithm. Indeed, the filtering can be
rewritten as a regularized projection on an orthonormal basis:

min
λ∈Rk

OTγ(x, Dλ) + FN (λ)

where

FN (λ) =

{
0 if ∀i ∈ N s.t. λi = 0

∞ otherwise.

The convex conjugate of FN is

F ∗N (h) =

{
0 if ∀i ∈ N s.t. λi = 0

∞ otherwise.

F ∗N (h) is not differentiable, however its proximal operator is easy to compute:

proxF ∗N (h)i =

{
0 if i ∈ N
hi otherwise.

which is simply a regular filter on the complementary components to those described
by N . Thus we can solve the dual problem:

min
h∈Rn

OT∗γ(x,h) + F ∗N (−D>h),
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and recover λ? through the primal-dual relationship: λ? = D>∇OT∗γ(x,h
?).

We use this method to perform low-pass filters on images, and compare the results
with regular low-pass filtering, which can be viewed as a regularized projection w.r.t.
the Euclidean distance with the same regularizer.

Figure 4.5: Low-pass filtering of the DTC coefficients. Left: original image; Center:
Euclidean filtering; Right: Optimal Transport filtering. Top: keeping the 1/16th lowest
frequencies. Bottom: keeping the 1/4th lowest frequencies.

Taken from Rolet and Seguy [2021]

4.3.1.1 Experimental results

Figure 4.5 shows the result of applying a low-pass filter on a 256×256 image, keeping
either the 1/16th or 1/4th coefficients of its discrete cosine transform (DCT) of lowest
frequency. We set the regularization parameter γ of the entropy-regularized optimal
transport to 0.1, meaning that an optimal transport pass filter of full bandwidth would
correspond to a Gaussian blur of standard deviation 0.1 pixel (see Section 1.1.3), which
is almost invisible to the naked eye.

Both filtering methods show the wave-like patterns around edges in the image
typical of DCT filtering, however these are more pronounced in the case of the classical,
“Euclidean” filtering.
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4.3.2 Coefficients Shrinkage and Thresholding

Let x ∈ Rn
+ be a non-negative vector and D ∈ Rn×n be an invertible matrix, typically

representing a discrete wavelet or Fourier basis. Coefficient shrinkage of x usually
refers to soft-thresholding of the coefficients λ = D−1x defined as:

Sα(λ) = sign(λ)�max {|λ| − α, 0} .

In the case where D is orthonormal, Sα(D−1x) is also the solution of the l1 regu-
larized Euclidean projection on D:

Sα(D−1x) = argmin
λ
‖x−Dλ‖2

2 + α ‖λ‖1 .

Hard thresholding on the other hand, is defined as

Hα(λ)i =

{
λi if |λi| > α

0 otherwise.

Non-zero coefficients are the same for both hard and soft thresholding. If D is
orthonormal, Hα(D−1x) is also the solution of the l0 regularized euclidean projection
on D:

argmin
λ
‖x−Dλ‖2

2 + α ‖λ‖0 .

4.3.2.1 Optimal transport shrinkage

We mirror this definition of shrinkage to define the optimal transport shrinkage of x
as

argmin
λ

OTγ(x, Dλ) + α‖λ‖1

for some α > 0. This problem can be solved efficiently through one of its dual, i.e.
Problem (4.6) or Problem (4.7) with R := λ 7→ α‖λ‖1. The convex conjugate of R∗

of R is an indicator of the l∞ ball of radius α, and its proximal is a projection on that
same ball:

R∗(h) =

{
0 if ‖h‖∞ ≤ α

∞ otherwise,

prox∗R(h) = sign(h)�min(|h|, α).
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We recover λ? from the primal-dual relationships defined in Equation (4.5) or
Equation (4.8). Because of machine precision, and of the fact that we can never solve
the dual exactly, the coefficients we recover are not sparse, but a lot of them are very
close to 0. We can however recover the sparsity pattern of λ? with the first order
conditions for Problem (4.4) with respect to λ. Indeed, these first order conditions
are −D>h? ∈ ∇R(λ?), i.e.:

−D>h? ∈
{
a ∈ Rk

∣∣∣∣∣− α ≤ ai ≤ α if λ?i = 0

ai = sign(λ?i )α otherwise

}
.

Accordingly, we can set λ?i to 0 for all i such that
∣∣(D>h?)i∣∣ < α.

Since ‖ · ‖1 is convex, has full domain and D is full rank, the optimal transport
coefficient shrinkage problem has a unique solution according to Theorem 2.2.3 and
Theorem 2.2.2.

4.3.2.2 Optimal transport hard thresholding

Since the `0 norm is not a convex function, we do not have a method to solve the
`0-regularized optimal transport projection. We define hard thresholding of the coeffi-
cients by analogy with the Euclidean case, based on the fact that the sparsity pattern
for hard and soft thresholding is the same. In other words, hard thresholding corre-
sponds to a pass filters on the non-zero coefficients of the soft-thresholding operator.
In terms of optimization problems, this means that if λ? is the solution of

min
λ
‖x−Dλ‖2

2 + α ‖λ‖1 ,

and denoting N = {i s.t. λ?i = 0}, then

Hα(D−1x) = argmin
λ

∀i∈N , λi=0

‖x−Dλ‖2 .

Similarly, for α > 0, we define the optimal transport hard thresholding as the
optimal transport pass filter on the non-zero coefficients of

argmin
λ

OTγ(x, Dλ) + α‖λ‖1.

We compute the pass filter using the method defined in Section 4.3.1. Hard thresh-
olding allows us to get better results when the level of noise on the signal is low. We
analyze in the remainder of this section the effect of using optimal transport instead
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of the usual implicit Euclidean distance when performing hard and soft thresholding
for either compression or denoising.

4.3.2.3 Compressing

Hard thresholding can be used to perform compressing, where the goal is to represent
an image with as few coefficients as possible, while retaining good image quality.

Figure 4.6: Compression with Euclidean or Optimal Transport hard thresholding with
biorthogonal spline wavelets of order 2 and dual order 4. Sparsity is set to 95%.
Left: original image; Center: Euclidean hard thresholding; Right: Optimal Transport
hard thresholding. Top: biorthogonal spline wavelets decomposition. Bottom: DCT
decomposition.

Taken from Rolet and Seguy [2021]

Figure 4.6 shows the effect of optimal transport and Euclidean hard thresholding
on the coefficients of either biorthogonal spline wavelets [Cohen et al., 1992] or DCT
decomposition, where 5% of the coefficients are kept. Again we observe higher levels
of artifacts with Euclidean thresholding.

For the biorthogonal spline wavelet decomposition, these artifact are especially
visible in low contrast areas such as the background. As a result the fence-like struc-
ture at the top of the image has almost disappeared with Euclidean thresholding, but
is still visible with optimal transport.
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(a) Original image (b) Noisy image (c) VisuShrink

(d) SureShrink (e) BayesShrink (f) NormalShrink

(g) newThresh, α = 3.7 (h) OT hard thresholding (i) OT Shrinkage

Figure 4.7: Denoising of salt-and-pepper noise of level σ = 10% with Daubechies
wavelets of order 2.

Taken from Rolet and Seguy [2021]

4.3.2.4 Denoising

We now examine how optimal transport thresholding compares to other wavelet coef-
ficient shrinkage methods for image denoising. Many of the standard wavelet methods
for image denoising perform either a soft or hard thresholding on the coefficients, which
makes them inherently Euclidean sparse projection methods. Their main difference is
on how to select the threshold. We compare our methods to visuShrink [Donoho and
Johnstone, 1994], which selects one global threshold for the image, and adaptive meth-
ods which select a threshold for each wavelet decomposition level: sureShrink [Donoho
and Johnstone, 1995], bayesShrink [Chang et al., 2000] and normalShrink [Kaur et al.,
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Noise σ normalShrink sureShrink bayesShrink visuShrink newThresh OT hard OT soft

Salt & pepper
5% 0.384 0.353 0.347 0.318 0.328 0.520 0.545
10% 0.333 0.257 0.277 0.191 0.238 0.403 0.441
15% 0.259 0.229 0.278 0.114 0.173 0.319 0.350

Gaussian
0.2 0.641 0.706 0.704 0.403 0.533 0.666 0.701
0.3 0.532 0.604 0.600 0.312 0.424 0.581 0.613
0.4 0.459 0.525 0.523 0.256 0.357 0.505 0.537

(a) SSIM

Noise σ normalShrink sureShrink bayesShrink visuShrink newThresh OT hard OT soft

Salt & pepper
5% 18.826 16.965 16.752 20.140 20.212 22.086 22.911
10% 19.751 16.256 16.996 18.535 19.084 20.631 21.077
15% 19.157 17.310 18.610 17.310 18.069 19.343 19.781

Gaussian
0.2 25.123 25.903 25.849 22.177 23.775 24.844 25.698
0.3 23.594 24.163 24.172 20.889 22.288 23.308 24.190
0.4 22.644 23.098 23.097 20.054 21.307 22.328 23.171

(b) pSNR

Table 4.2: Denoising scores for different wavelet thresholding methods.
Taken from Rolet and Seguy [2021]

2002]. We also compare our method with Dehda and Melkemi [2017], a thresholding
method which uses a smooth thresholding function which can be seen as a trade-
off between soft and hard thresholding. We call this method “newThresh” in the
experiment.

With optimal transport, adaptive thresholding could be achieved by using either
a weighted `1-norm or a block-sparse regularizer. However we found that this doesn’t
improve significantly upon simple `1-norm regularization and we only report the re-
sults of “global” thresholding here for simplicity.

For this experiment, we corrupt a 256 × 256 image with either a Gaussian or a
salt-and-pepper noise with several noise levels σ. In the case of the Gaussian noise, σ
is the variance and is taken to be 0.2, 0.3 or 0.4 times the mean intensity of the image.
For the salt-and-pepper noise, σ ∈ {5%, 10%, 15%} is the proportion of pixels that are
set to 0, and the same number are set to the maximum intensity (255). We perform
coefficient shrinkage on the coefficients of Daubechies wavelets of order 2 [Daubechies,
1992] of the noisy image.

Figure 4.7 shows the images produced by the different thresholding methods for
a salt-and-pepper noise. Similarly to the low-pass filtering and compression experi-
ments, optimal transport based thresholding shows less wavelet artifacts. Hard thresh-
olding appears to produce images that are sharper, but also more corrupted.

Table 4.2 reports the pSNR and SSIM [Wang et al., 2004] scores for each method
and each noise. Our methods and newThresh each have a free parameter. For
newThresh, we report the best score among 15 candidate shape parameters α in
a log-scale interval from 1e − 4 to 1e4. For optimal transport methods, we report
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Figure 4.8: Comparison of SSIM values as a function of sparsity. Competitors produce
a single image, and are represented as a point. Top: salt-and-pepper noise with σ =
10%. Bottom: Gaussian noise with of σ = 0.3.
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4.3. APPLICATIONS

the best score among 10 candidate regularization parameters α in the interval from
0.25 to 6. Optimal transport shrinkage improves upon all other methods for both
denoising scores, except for a small intensity Gaussian noise, for which sureShrink
and baryesShrink perform slightly better. In particular, optimal transport brings
significant improvement for a salt-and-pepper noise.

We now investigate how sparsity of the coefficients of the denoised image impacts
the denoising score. Figure 4.8 plots the SSIM score with respect to sparsity for all
methods. We first observe that if we only compare optimal transport thresholding
to its Euclidean counterpart, optimal transport achieves a higher SSIM across all
sparsities for both noises. Furthermore, we see that for the salt-and-pepper noise,
optimal transport shrinkage achieves better results than other methods, even without
selecting the sparsity carefully: all points of the blue curve above 40% sparsity have a
better SSIM score than competitors, excluding optimal transport hard thresholding.
With a Gaussian noise, which sureShrink and bayesShrink are optimized for, we can
see that optimal transport shrinkage is still competitive, and achieves similar results
as sureShrink and bayesShrink for the same sparsity.

With optimal transport shrinkage, the denoising output for an image is not defined
uniquely, but rather is a function of sparsity (or of the regularization parameter). This
is a good thing in a supervised setting, in which a user can modify the regularization
parameter α until they are satisfied with the output. However it also means that
in an unsupervised, or automated setting, we need a way to select the sparsity level
based on the image. Based on Figure 4.8, a simple solution would be to pick any of
the sparsities obtained by the outputs of sureShrink, bayesShrink and normalShrink,
or their average sparsity.

93



CHAPTER 4. OPTIMAL TRANSPORT REGULARIZED PROJECTION

4.4 Chapter Conclusion

In this chapter we showed how to perform a regularized projection of a signal onto a
fixed dictionary with respect to the optimal transport distance. We showed that while
the general saddle point method is slow, we can get faster algorithms when either the
regularizer’s convex conjugate is differentiable or the dictionary is invertible. This last
case allows us to perform sparse signal decomposition in various domains, including
the discrete Fourier domain or wavelets. In practice, our results show that this optimal
transport coefficients shrinkage yields less artifacts than coefficient shrinkage, where
the signal is projected with respect to the Euclidean distance. For image denoising, it
also outperforms other widely used wavelet based methods such as BayesShrink and
SureShrink, especially for images corrupted with non-Gaussian noise.

The remainder of this monograph will show how to adapt and extend our dual
methods to perform optimal transport dictionary learning and NMF, and showcase
applications in natural language processing and sound processing.
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Conclusion

In this thesis, we have shown how to use optimal transport as the loss for the dic-
tionary learning and non-negative matrix factorization problems. Optimal transport
had been used before to address some specific tasks in data processing or pattern
recognition, mainly as the metric in metric-based information retrieval algorithms.
However the use of optimal transport as a loss for training machine learning mod-
els on large datasets was still out of reach due to the high complexity of computing
optimal transport and its gradients. Thanks to our dual methods, we were among
the firsts to learn models trained with an optimal transport loss, especially on large
datasets. We showed the benefit of using optimal transport as opposed to other losses,
not only in terms of performance, but also because it allows to learn models which
can be applied to data in a different domain.

5.1 Contributions

Building on previous works in optimal transport regularization, we derived a method
which allow to solve optimal transport dictionary learning and NMF efficiently in
Chapter 2. Mirroring the celebrated alternative least square procedure, we solve
optimal transport dictionary learning by alternating an optimal transport regularized
projection step and a dictionary update step until convergence. We derived duals for
both of these steps which can be solved efficiently by making use of the simple form
of the convex conjugate of regularized optimal transport. We showed how optimal
transport NMF improves upon its Euclidean and KL counterparts when applied to
topic modeling.

We proposed to leverage the versatility of optimal transport to perform what we
called cross-domain learning, where a model can be learned on, or applied to, data
in a different domain. This can be used in topic modeling to learn a single language
representation of a dataset in multiple languages for example, and we are not aware
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of other methods which could address this task efficiently prior to our work.

After our first results were published, a musical note transcription method based
on learning only the coefficients, with a dictionary made of Diracs, was proposed
with encouraging results. The method was tractable thanks to the simple form of
the dictionary and relied on a ground cost matrix specifically designed for musical
instruments to achieve good performance. We decided to further investigate this
area by adapting our optimal transport NMF method to sound processing, so that
it can be applied to sound data. We showed in Chapter 3 how to design a cost
matrix adapted to the processing of sound data, optionally in a cross-domain setting.
Applying the principle of the Weiner filter to optimal transport concepts, we showed
how to reconstruct sounds from STFT spectrograms using optimal transport plans.
A particular interest of optimal transport in source separation tasks is that it seems
well adapted to learn universal models. That is, dictionaries which can be applied
to a whole class of sources (e.g. any voice) instead of a specific source. We showed
improvements of perceptual scores when compared to Euclidean, KL and IS NMF,
both on a voice separation task and on a voice denoising task.

Lastly, we focused in Chapter 4 on one step of the dictionary learning procedure:
optimal transport regularized projection. Regularized projection with the Euclidean
metric is a common procedure in signal processing, with applications to denoising, or
compression in the sparse case. We defined optimal transport regularized projections,
and in particular we gave fast methods which can be applied to most regularizers
in the case of an invertible dictionary, which we used to solve the optimal transport
wavelet shrinkage problem. By applying our methods to clear and noisy image data,
we showed that they can improve the performance of their Euclidean counter-part,
and that they tend to reduce artifact production.

5.2 Future work

We have shown the interest of using optimal transport as a loss for dictionary learning
and NMF, and we are now very interested in seeing it applied to more complicated
models. In the Euclidean case for example, adding a sparsity-inducing term has been
shown to greatly improve performance on various tasks ranging from image denoising
to blind source separation. In order to apply the same idea with optimal transport,
the need arises for fast methods to compute sparse coefficients. We were able to derive
such methods in the case of an orthonormal or an invertible dictionary, and we believe
that similar methods can be developed for the general case. Sparse NMF on another
hand is a simpler problem since the `1-norm in this case is just a linear term, however
this term is redundant with the optimal transport constraint that both inputs have
the same total weight. We believe that using recent advances in unbalanced optimal
transport could help, in conjunction with our work, to define fast dual methods for
sparse optimal transport NMF.
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We were able to apply our NMF method to text data thanks to word embeddings,
which leverage neural network architectures to learn feature representations for each
word in their training dataset. Such representations are not always available however,
and in our sound processing experiments we relied on expert knowledge to define a
cost matrix adapted to sound data. More generally, the choice of an optimal cost
matrix for a specific type of data remains an open problem. Some works on learning
the cost matrix already exist, and we believe that any progress in this area would
directly any optimal transport-based method.

Thanks to our dual methods, we showed that optimal transport dictionary and
NMF problems can in fact be tractable. Further improvements on the computational
side could allow to learn models on bigger or even infinite datasets. For instance,
stochastic or batch methods, in which only a subset of the columns of the input
matrix are treated at a time, could help both to reduce the complexity of each step
of the procedure, but also to avoid getting stuck early in a bad local minimum.
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l’Académie Royale des Sciences de Paris, 1781.
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Emmanuel Vincent, Rémi Gribonval, and Cédric Févotte. Performance measurement
in blind audio source separation. IEEE transactions on audio, speech, and language
processing, 14(4):1462–1469, 2006.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality
assessment: from error visibility to structural similarity. IEEE transactions on
image processing, 13(4):600–612, 2004.

G. Zen, E. Ricci, and N. Sebe. Simultaneous ground metric learning and matrix
factorization with earth mover’s distance. In Pattern Recognition (ICPR), 2014
22nd International Conference on, pages 3690–3695. IEEE, 2014.

S. Zhang, W. Wang, J. Ford, and F. Makedon. Learning from incomplete ratings
using non-negative matrix factorization. In SDM, volume 6, pages 548–552. SIAM,
2006.

W.Y. Zou, R. Socher, D.M. Cer, and C.D. Manning. Bilingual word embeddings for
phrase-based machine translation. pages 1393–1398, 2013.

106


	Acknowledgments
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Notations
	Optimal Transport
	Optimal Assignment
	Exact Optimal Transport
	Entropy Regularized Optimal Transport

	Dictionary Learning and NMF
	Problem Formulation
	Algorithms
	Probabilistic Latent Semantic Indexing and NMF
	Other Applications

	Contributions

	Optimal Transport Dictionary Learning and Non-negative Matrix Factorization
	Chapter Introduction
	Optimal Transport Dictionary Learning
	Weights Update
	Dictionary Update
	Algorithms
	Convergence
	Implementation

	Experiments
	Face Recognition
	Topic Modeling

	Chapter Conclusion

	Blind Source Separation with Optimal Transport Non-negative Matrix Factorization
	Chapter Introduction
	Signal Separation With NMF
	Voice-Voice Separation
	Denoising with Universal Models

	Method
	Cost Matrix Design
	Post-processing

	Results
	Dataset and Pre-processing
	NMF Audio Quality
	Voice-voice Blind Source Separation
	Universal Voice Model for Speech Denoising

	Discussion
	Regularization of the Transport Plan
	Learning Procedure
	Future Work

	Chapter Conclusion

	Optimal Transport Regularized Projection
	Chapter Introduction
	Methods
	Dual Problem
	Saddle Point Problem
	Special Case: Invertible Dictionary
	Time Comparisons

	Applications
	Optimal Transport Filtering
	Coefficients Shrinkage and Thresholding

	Chapter Conclusion

	Conclusion
	Contributions
	Future work

	List of Publications
	Bibliography

